-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline_easy.py
1911 lines (1681 loc) · 90.4 KB
/
pipeline_easy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2025 suzukimain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import types
from collections import OrderedDict
from dataclasses import asdict, dataclass, field
from typing import Dict, List, Optional, Union
import requests
import torch
from huggingface_hub import hf_api, hf_hub_download
from huggingface_hub.file_download import http_get
from huggingface_hub.utils import validate_hf_hub_args
from diffusers.loaders.single_file_utils import (
VALID_URL_PREFIXES,
_extract_repo_id_and_weights_name,
infer_diffusers_model_type,
load_single_file_checkpoint,
)
from diffusers.pipelines.animatediff import AnimateDiffPipeline, AnimateDiffSDXLPipeline
from diffusers.pipelines.auto_pipeline import (
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
AutoPipelineForText2Image,
)
from diffusers.pipelines.controlnet import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetPipeline,
)
from diffusers.pipelines.flux import FluxImg2ImgPipeline, FluxPipeline
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import (
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
StableDiffusionUpscalePipeline,
)
from diffusers.pipelines.stable_diffusion_3 import StableDiffusion3Img2ImgPipeline, StableDiffusion3Pipeline
from diffusers.pipelines.stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLPipeline,
)
from diffusers.utils import logging
logger = logging.get_logger(__name__)
SINGLE_FILE_CHECKPOINT_TEXT2IMAGE_PIPELINE_MAPPING = OrderedDict(
[
("animatediff_rgb", AnimateDiffPipeline),
("animatediff_scribble", AnimateDiffPipeline),
("animatediff_sdxl_beta", AnimateDiffSDXLPipeline),
("animatediff_v1", AnimateDiffPipeline),
("animatediff_v2", AnimateDiffPipeline),
("animatediff_v3", AnimateDiffPipeline),
("autoencoder-dc-f128c512", None),
("autoencoder-dc-f32c32", None),
("autoencoder-dc-f32c32-sana", None),
("autoencoder-dc-f64c128", None),
("controlnet", StableDiffusionControlNetPipeline),
("controlnet_xl", StableDiffusionXLControlNetPipeline),
("controlnet_xl_large", StableDiffusionXLControlNetPipeline),
("controlnet_xl_mid", StableDiffusionXLControlNetPipeline),
("controlnet_xl_small", StableDiffusionXLControlNetPipeline),
("flux-depth", FluxPipeline),
("flux-dev", FluxPipeline),
("flux-fill", FluxPipeline),
("flux-schnell", FluxPipeline),
("hunyuan-video", None),
("inpainting", None),
("inpainting_v2", None),
("ltx-video", None),
("ltx-video-0.9.1", None),
("mochi-1-preview", None),
("playground-v2-5", StableDiffusionXLPipeline),
("sd3", StableDiffusion3Pipeline),
("sd35_large", StableDiffusion3Pipeline),
("sd35_medium", StableDiffusion3Pipeline),
("stable_cascade_stage_b", None),
("stable_cascade_stage_b_lite", None),
("stable_cascade_stage_c", None),
("stable_cascade_stage_c_lite", None),
("upscale", StableDiffusionUpscalePipeline),
("v1", StableDiffusionPipeline),
("v2", StableDiffusionPipeline),
("xl_base", StableDiffusionXLPipeline),
("xl_inpaint", None),
("xl_refiner", StableDiffusionXLPipeline),
]
)
SINGLE_FILE_CHECKPOINT_IMAGE2IMAGE_PIPELINE_MAPPING = OrderedDict(
[
("animatediff_rgb", AnimateDiffPipeline),
("animatediff_scribble", AnimateDiffPipeline),
("animatediff_sdxl_beta", AnimateDiffSDXLPipeline),
("animatediff_v1", AnimateDiffPipeline),
("animatediff_v2", AnimateDiffPipeline),
("animatediff_v3", AnimateDiffPipeline),
("autoencoder-dc-f128c512", None),
("autoencoder-dc-f32c32", None),
("autoencoder-dc-f32c32-sana", None),
("autoencoder-dc-f64c128", None),
("controlnet", StableDiffusionControlNetImg2ImgPipeline),
("controlnet_xl", StableDiffusionXLControlNetImg2ImgPipeline),
("controlnet_xl_large", StableDiffusionXLControlNetImg2ImgPipeline),
("controlnet_xl_mid", StableDiffusionXLControlNetImg2ImgPipeline),
("controlnet_xl_small", StableDiffusionXLControlNetImg2ImgPipeline),
("flux-depth", FluxImg2ImgPipeline),
("flux-dev", FluxImg2ImgPipeline),
("flux-fill", FluxImg2ImgPipeline),
("flux-schnell", FluxImg2ImgPipeline),
("hunyuan-video", None),
("inpainting", None),
("inpainting_v2", None),
("ltx-video", None),
("ltx-video-0.9.1", None),
("mochi-1-preview", None),
("playground-v2-5", StableDiffusionXLImg2ImgPipeline),
("sd3", StableDiffusion3Img2ImgPipeline),
("sd35_large", StableDiffusion3Img2ImgPipeline),
("sd35_medium", StableDiffusion3Img2ImgPipeline),
("stable_cascade_stage_b", None),
("stable_cascade_stage_b_lite", None),
("stable_cascade_stage_c", None),
("stable_cascade_stage_c_lite", None),
("upscale", StableDiffusionUpscalePipeline),
("v1", StableDiffusionImg2ImgPipeline),
("v2", StableDiffusionImg2ImgPipeline),
("xl_base", StableDiffusionXLImg2ImgPipeline),
("xl_inpaint", None),
("xl_refiner", StableDiffusionXLImg2ImgPipeline),
]
)
SINGLE_FILE_CHECKPOINT_INPAINT_PIPELINE_MAPPING = OrderedDict(
[
("animatediff_rgb", None),
("animatediff_scribble", None),
("animatediff_sdxl_beta", None),
("animatediff_v1", None),
("animatediff_v2", None),
("animatediff_v3", None),
("autoencoder-dc-f128c512", None),
("autoencoder-dc-f32c32", None),
("autoencoder-dc-f32c32-sana", None),
("autoencoder-dc-f64c128", None),
("controlnet", StableDiffusionControlNetInpaintPipeline),
("controlnet_xl", None),
("controlnet_xl_large", None),
("controlnet_xl_mid", None),
("controlnet_xl_small", None),
("flux-depth", None),
("flux-dev", None),
("flux-fill", None),
("flux-schnell", None),
("hunyuan-video", None),
("inpainting", StableDiffusionInpaintPipeline),
("inpainting_v2", StableDiffusionInpaintPipeline),
("ltx-video", None),
("ltx-video-0.9.1", None),
("mochi-1-preview", None),
("playground-v2-5", None),
("sd3", None),
("sd35_large", None),
("sd35_medium", None),
("stable_cascade_stage_b", None),
("stable_cascade_stage_b_lite", None),
("stable_cascade_stage_c", None),
("stable_cascade_stage_c_lite", None),
("upscale", StableDiffusionUpscalePipeline),
("v1", None),
("v2", None),
("xl_base", None),
("xl_inpaint", StableDiffusionXLInpaintPipeline),
("xl_refiner", None),
]
)
CONFIG_FILE_LIST = [
"pytorch_model.bin",
"pytorch_model.fp16.bin",
"diffusion_pytorch_model.bin",
"diffusion_pytorch_model.fp16.bin",
"diffusion_pytorch_model.safetensors",
"diffusion_pytorch_model.fp16.safetensors",
"diffusion_pytorch_model.ckpt",
"diffusion_pytorch_model.fp16.ckpt",
"diffusion_pytorch_model.non_ema.bin",
"diffusion_pytorch_model.non_ema.safetensors",
]
DIFFUSERS_CONFIG_DIR = [
"safety_checker",
"unet",
"vae",
"text_encoder",
"text_encoder_2",
]
TOKENIZER_SHAPE_MAP = {
768: [
"SD 1.4",
"SD 1.5",
"SD 1.5 LCM",
"SDXL 0.9",
"SDXL 1.0",
"SDXL 1.0 LCM",
"SDXL Distilled",
"SDXL Turbo",
"SDXL Lightning",
"PixArt a",
"Playground v2",
"Pony",
],
1024: ["SD 2.0", "SD 2.0 768", "SD 2.1", "SD 2.1 768", "SD 2.1 Unclip"],
}
EXTENSION = [".safetensors", ".ckpt", ".bin"]
CACHE_HOME = os.path.expanduser("~/.cache")
@dataclass
class RepoStatus:
r"""
Data class for storing repository status information.
Attributes:
repo_id (`str`):
The name of the repository.
repo_hash (`str`):
The hash of the repository.
version (`str`):
The version ID of the repository.
"""
repo_id: str = ""
repo_hash: str = ""
version: str = ""
@dataclass
class ModelStatus:
r"""
Data class for storing model status information.
Attributes:
search_word (`str`):
The search word used to find the model.
download_url (`str`):
The URL to download the model.
file_name (`str`):
The name of the model file.
local (`bool`):
Whether the model exists locally
site_url (`str`):
The URL of the site where the model is hosted.
"""
search_word: str = ""
download_url: str = ""
file_name: str = ""
local: bool = False
site_url: str = ""
@dataclass
class ExtraStatus:
r"""
Data class for storing extra status information.
Attributes:
trained_words (`str`):
The words used to trigger the model
"""
trained_words: Union[List[str], None] = None
@dataclass
class SearchResult:
r"""
Data class for storing model data.
Attributes:
model_path (`str`):
The path to the model.
loading_method (`str`):
The type of loading method used for the model ( None or 'from_single_file' or 'from_pretrained')
checkpoint_format (`str`):
The format of the model checkpoint (`single_file` or `diffusers`).
repo_status (`RepoStatus`):
The status of the repository.
model_status (`ModelStatus`):
The status of the model.
"""
model_path: str = ""
loading_method: Union[str, None] = None
checkpoint_format: Union[str, None] = None
repo_status: RepoStatus = field(default_factory=RepoStatus)
model_status: ModelStatus = field(default_factory=ModelStatus)
extra_status: ExtraStatus = field(default_factory=ExtraStatus)
@validate_hf_hub_args
def load_pipeline_from_single_file(pretrained_model_or_path, pipeline_mapping, **kwargs):
r"""
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
pipeline_mapping (`dict`):
A mapping of model types to their corresponding pipeline classes. This is used to determine
which pipeline class to instantiate based on the model type inferred from the checkpoint.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
original_config_file (`str`, *optional*):
The path to the original config file that was used to train the model. If not provided, the config file
will be inferred from the checkpoint file.
config (`str`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline
component configs in Diffusers format.
checkpoint (`dict`, *optional*):
The loaded state dictionary of the model.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
"""
# Load the checkpoint from the provided link or path
checkpoint = load_single_file_checkpoint(pretrained_model_or_path)
# Infer the model type from the loaded checkpoint
model_type = infer_diffusers_model_type(checkpoint)
# Get the corresponding pipeline class from the pipeline mapping
pipeline_class = pipeline_mapping[model_type]
# For tasks not supported by this pipeline
if pipeline_class is None:
raise ValueError(
f"{model_type} is not supported in this pipeline."
"For `Text2Image`, please use `AutoPipelineForText2Image.from_pretrained`, "
"for `Image2Image` , please use `AutoPipelineForImage2Image.from_pretrained`, "
"and `inpaint` is only supported in `AutoPipelineForInpainting.from_pretrained`"
)
else:
# Instantiate and return the pipeline with the loaded checkpoint and any additional kwargs
return pipeline_class.from_single_file(pretrained_model_or_path, **kwargs)
def get_keyword_types(keyword):
r"""
Determine the type and loading method for a given keyword.
Parameters:
keyword (`str`):
The input keyword to classify.
Returns:
`dict`: A dictionary containing the model format, loading method,
and various types and extra types flags.
"""
# Initialize the status dictionary with default values
status = {
"checkpoint_format": None,
"loading_method": None,
"type": {
"other": False,
"hf_url": False,
"hf_repo": False,
"civitai_url": False,
"local": False,
},
"extra_type": {
"url": False,
"missing_model_index": None,
},
}
# Check if the keyword is an HTTP or HTTPS URL
status["extra_type"]["url"] = bool(re.search(r"^(https?)://", keyword))
# Check if the keyword is a file
if os.path.isfile(keyword):
status["type"]["local"] = True
status["checkpoint_format"] = "single_file"
status["loading_method"] = "from_single_file"
# Check if the keyword is a directory
elif os.path.isdir(keyword):
status["type"]["local"] = True
status["checkpoint_format"] = "diffusers"
status["loading_method"] = "from_pretrained"
if not os.path.exists(os.path.join(keyword, "model_index.json")):
status["extra_type"]["missing_model_index"] = True
# Check if the keyword is a Civitai URL
elif keyword.startswith("https://civitai.com/"):
status["type"]["civitai_url"] = True
status["checkpoint_format"] = "single_file"
status["loading_method"] = None
# Check if the keyword starts with any valid URL prefixes
elif any(keyword.startswith(prefix) for prefix in VALID_URL_PREFIXES):
repo_id, weights_name = _extract_repo_id_and_weights_name(keyword)
if weights_name:
status["type"]["hf_url"] = True
status["checkpoint_format"] = "single_file"
status["loading_method"] = "from_single_file"
else:
status["type"]["hf_repo"] = True
status["checkpoint_format"] = "diffusers"
status["loading_method"] = "from_pretrained"
# Check if the keyword matches a Hugging Face repository format
elif re.match(r"^[^/]+/[^/]+$", keyword):
status["type"]["hf_repo"] = True
status["checkpoint_format"] = "diffusers"
status["loading_method"] = "from_pretrained"
# If none of the above apply
else:
status["type"]["other"] = True
status["checkpoint_format"] = None
status["loading_method"] = None
return status
def file_downloader(
url,
save_path,
**kwargs,
) -> None:
"""
Downloads a file from a given URL and saves it to the specified path.
parameters:
url (`str`):
The URL of the file to download.
save_path (`str`):
The local path where the file will be saved.
resume (`bool`, *optional*, defaults to `False`):
Whether to resume an incomplete download.
headers (`dict`, *optional*, defaults to `None`):
Dictionary of HTTP Headers to send with the request.
proxies (`dict`, *optional*, defaults to `None`):
Dictionary mapping protocol to the URL of the proxy passed to `requests.request`.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force the download even if the file already exists.
displayed_filename (`str`, *optional*):
The filename of the file that is being downloaded. Value is used only to display a nice progress bar. If
not set, the filename is guessed from the URL or the `Content-Disposition` header.
returns:
None
"""
# Get optional parameters from kwargs, with their default values
resume = kwargs.pop("resume", False)
headers = kwargs.pop("headers", None)
proxies = kwargs.pop("proxies", None)
force_download = kwargs.pop("force_download", False)
displayed_filename = kwargs.pop("displayed_filename", None)
# Default mode for file writing and initial file size
mode = "wb"
file_size = 0
# Create directory
os.makedirs(os.path.dirname(save_path), exist_ok=True)
# Check if the file already exists at the save path
if os.path.exists(save_path):
if not force_download:
# If the file exists and force_download is False, skip the download
logger.info(f"File already exists: {save_path}, skipping download.")
return None
elif resume:
# If resuming, set mode to append binary and get current file size
mode = "ab"
file_size = os.path.getsize(save_path)
# Open the file in the appropriate mode (write or append)
with open(save_path, mode) as model_file:
# Call the http_get function to perform the file download
return http_get(
url=url,
temp_file=model_file,
resume_size=file_size,
displayed_filename=displayed_filename,
headers=headers,
proxies=proxies,
**kwargs,
)
def search_huggingface(search_word: str, **kwargs) -> Union[str, SearchResult, None]:
r"""
Downloads a model from Hugging Face.
Parameters:
search_word (`str`):
The search query string.
revision (`str`, *optional*):
The specific version of the model to download.
checkpoint_format (`str`, *optional*, defaults to `"single_file"`):
The format of the model checkpoint.
download (`bool`, *optional*, defaults to `False`):
Whether to download the model.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force the download if the model already exists.
include_params (`bool`, *optional*, defaults to `False`):
Whether to include parameters in the returned data.
pipeline_tag (`str`, *optional*):
Tag to filter models by pipeline.
token (`str`, *optional*):
API token for Hugging Face authentication.
gated (`bool`, *optional*, defaults to `False` ):
A boolean to filter models on the Hub that are gated or not.
skip_error (`bool`, *optional*, defaults to `False`):
Whether to skip errors and return None.
Returns:
`Union[str, SearchResult, None]`: The model path or SearchResult or None.
"""
# Extract additional parameters from kwargs
revision = kwargs.pop("revision", None)
checkpoint_format = kwargs.pop("checkpoint_format", "single_file")
download = kwargs.pop("download", False)
force_download = kwargs.pop("force_download", False)
include_params = kwargs.pop("include_params", False)
pipeline_tag = kwargs.pop("pipeline_tag", None)
token = kwargs.pop("token", None)
gated = kwargs.pop("gated", False)
skip_error = kwargs.pop("skip_error", False)
file_list = []
hf_repo_info = {}
hf_security_info = {}
model_path = ""
repo_id, file_name = "", ""
diffusers_model_exists = False
# Get the type and loading method for the keyword
search_word_status = get_keyword_types(search_word)
if search_word_status["type"]["hf_repo"]:
hf_repo_info = hf_api.model_info(repo_id=search_word, securityStatus=True)
if download:
model_path = DiffusionPipeline.download(
search_word,
revision=revision,
token=token,
force_download=force_download,
**kwargs,
)
else:
model_path = search_word
elif search_word_status["type"]["hf_url"]:
repo_id, weights_name = _extract_repo_id_and_weights_name(search_word)
if download:
model_path = hf_hub_download(
repo_id=repo_id,
filename=weights_name,
force_download=force_download,
token=token,
)
else:
model_path = search_word
elif search_word_status["type"]["local"]:
model_path = search_word
elif search_word_status["type"]["civitai_url"]:
if skip_error:
return None
else:
raise ValueError("The URL for Civitai is invalid with `for_hf`. Please use `for_civitai` instead.")
else:
# Get model data from HF API
hf_models = hf_api.list_models(
search=search_word,
direction=-1,
limit=100,
fetch_config=True,
pipeline_tag=pipeline_tag,
full=True,
gated=gated,
token=token,
)
model_dicts = [asdict(value) for value in list(hf_models)]
# Loop through models to find a suitable candidate
for repo_info in model_dicts:
repo_id = repo_info["id"]
file_list = []
hf_repo_info = hf_api.model_info(repo_id=repo_id, securityStatus=True)
# Lists files with security issues.
hf_security_info = hf_repo_info.security_repo_status
exclusion = [issue["path"] for issue in hf_security_info["filesWithIssues"]]
# Checks for multi-folder diffusers model or valid files (models with security issues are excluded).
if hf_security_info["scansDone"]:
for info in repo_info["siblings"]:
file_path = info["rfilename"]
if "model_index.json" == file_path and checkpoint_format in [
"diffusers",
"all",
]:
diffusers_model_exists = True
break
elif (
any(file_path.endswith(ext) for ext in EXTENSION)
and not any(config in file_path for config in CONFIG_FILE_LIST)
and not any(exc in file_path for exc in exclusion)
and os.path.basename(os.path.dirname(file_path)) not in DIFFUSERS_CONFIG_DIR
):
file_list.append(file_path)
# Exit from the loop if a multi-folder diffusers model or valid file is found
if diffusers_model_exists or file_list:
break
else:
# Handle case where no models match the criteria
if skip_error:
return None
else:
raise ValueError("No models matching your criteria were found on huggingface.")
if diffusers_model_exists:
if download:
model_path = DiffusionPipeline.download(
repo_id,
token=token,
**kwargs,
)
else:
model_path = repo_id
elif file_list:
# Sort and find the safest model
file_name = next(
(model for model in sorted(file_list, reverse=True) if re.search(r"(?i)[-_](safe|sfw)", model)),
file_list[0],
)
if download:
model_path = hf_hub_download(
repo_id=repo_id,
filename=file_name,
revision=revision,
token=token,
force_download=force_download,
)
# `pathlib.PosixPath` may be returned
if model_path:
model_path = str(model_path)
if file_name:
download_url = f"https://huggingface.co/{repo_id}/blob/main/{file_name}"
else:
download_url = f"https://huggingface.co/{repo_id}"
output_info = get_keyword_types(model_path)
if include_params:
return SearchResult(
model_path=model_path or download_url,
loading_method=output_info["loading_method"],
checkpoint_format=output_info["checkpoint_format"],
repo_status=RepoStatus(repo_id=repo_id, repo_hash=hf_repo_info.sha, version=revision),
model_status=ModelStatus(
search_word=search_word,
site_url=download_url,
download_url=download_url,
file_name=file_name,
local=download,
),
extra_status=ExtraStatus(trained_words=None),
)
else:
return model_path
def search_civitai(search_word: str, **kwargs) -> Union[str, SearchResult, None]:
r"""
Downloads a model from Civitai.
Parameters:
search_word (`str`):
The search query string.
model_type (`str`, *optional*, defaults to `Checkpoint`):
The type of model to search for.
sort (`str`, *optional*):
The order in which you wish to sort the results(for example, `Highest Rated`, `Most Downloaded`, `Newest`).
base_model (`str`, *optional*):
The base model to filter by.
download (`bool`, *optional*, defaults to `False`):
Whether to download the model.
force_download (`bool`, *optional*, defaults to `False`):
Whether to force the download if the model already exists.
token (`str`, *optional*):
API token for Civitai authentication.
include_params (`bool`, *optional*, defaults to `False`):
Whether to include parameters in the returned data.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
resume (`bool`, *optional*, defaults to `False`):
Whether to resume an incomplete download.
skip_error (`bool`, *optional*, defaults to `False`):
Whether to skip errors and return None.
Returns:
`Union[str, SearchResult, None]`: The model path or ` SearchResult` or None.
"""
# Extract additional parameters from kwargs
model_type = kwargs.pop("model_type", "Checkpoint")
sort = kwargs.pop("sort", None)
download = kwargs.pop("download", False)
base_model = kwargs.pop("base_model", None)
force_download = kwargs.pop("force_download", False)
token = kwargs.pop("token", None)
include_params = kwargs.pop("include_params", False)
resume = kwargs.pop("resume", False)
cache_dir = kwargs.pop("cache_dir", None)
skip_error = kwargs.pop("skip_error", False)
# Initialize additional variables with default values
model_path = ""
repo_name = ""
repo_id = ""
version_id = ""
trainedWords = ""
models_list = []
selected_repo = {}
selected_model = {}
selected_version = {}
civitai_cache_dir = cache_dir or os.path.join(CACHE_HOME, "Civitai")
# Set up parameters and headers for the CivitAI API request
params = {
"query": search_word,
"types": model_type,
"limit": 20,
}
if base_model is not None:
if not isinstance(base_model, list):
base_model = [base_model]
params["baseModel"] = base_model
if sort is not None:
params["sort"] = sort
headers = {}
if token:
headers["Authorization"] = f"Bearer {token}"
try:
# Make the request to the CivitAI API
response = requests.get("https://civitai.com/api/v1/models", params=params, headers=headers)
response.raise_for_status()
except requests.exceptions.HTTPError as err:
raise requests.HTTPError(f"Could not get elements from the URL: {err}")
else:
try:
data = response.json()
except AttributeError:
if skip_error:
return None
else:
raise ValueError("Invalid JSON response")
# Sort repositories by download count in descending order
sorted_repos = sorted(data["items"], key=lambda x: x["stats"]["downloadCount"], reverse=True)
for selected_repo in sorted_repos:
repo_name = selected_repo["name"]
repo_id = selected_repo["id"]
# Sort versions within the selected repo by download count
sorted_versions = sorted(
selected_repo["modelVersions"],
key=lambda x: x["stats"]["downloadCount"],
reverse=True,
)
for selected_version in sorted_versions:
version_id = selected_version["id"]
trainedWords = selected_version["trainedWords"]
models_list = []
# When searching for textual inversion, results other than the values entered for the base model may come up, so check again.
if base_model is None or selected_version["baseModel"] in base_model:
for model_data in selected_version["files"]:
# Check if the file passes security scans and has a valid extension
file_name = model_data["name"]
if (
model_data["pickleScanResult"] == "Success"
and model_data["virusScanResult"] == "Success"
and any(file_name.endswith(ext) for ext in EXTENSION)
and os.path.basename(os.path.dirname(file_name)) not in DIFFUSERS_CONFIG_DIR
):
file_status = {
"filename": file_name,
"download_url": model_data["downloadUrl"],
}
models_list.append(file_status)
if models_list:
# Sort the models list by filename and find the safest model
sorted_models = sorted(models_list, key=lambda x: x["filename"], reverse=True)
selected_model = next(
(
model_data
for model_data in sorted_models
if bool(re.search(r"(?i)[-_](safe|sfw)", model_data["filename"]))
),
sorted_models[0],
)
break
else:
continue
break
# Exception handling when search candidates are not found
if not selected_model:
if skip_error:
return None
else:
raise ValueError("No model found. Please try changing the word you are searching for.")
# Define model file status
file_name = selected_model["filename"]
download_url = selected_model["download_url"]
# Handle file download and setting model information
if download:
# The path where the model is to be saved.
model_path = os.path.join(str(civitai_cache_dir), str(repo_id), str(version_id), str(file_name))
# Download Model File
file_downloader(
url=download_url,
save_path=model_path,
resume=resume,
force_download=force_download,
displayed_filename=file_name,
headers=headers,
**kwargs,
)
else:
model_path = download_url
output_info = get_keyword_types(model_path)
if not include_params:
return model_path
else:
return SearchResult(
model_path=model_path,
loading_method=output_info["loading_method"],
checkpoint_format=output_info["checkpoint_format"],
repo_status=RepoStatus(repo_id=repo_name, repo_hash=repo_id, version=version_id),
model_status=ModelStatus(
search_word=search_word,
site_url=f"https://civitai.com/models/{repo_id}?modelVersionId={version_id}",
download_url=download_url,
file_name=file_name,
local=output_info["type"]["local"],
),
extra_status=ExtraStatus(trained_words=trainedWords or None),
)
def add_methods(pipeline):
r"""
Add methods from `AutoConfig` to the pipeline.
Parameters:
pipeline (`Pipeline`):
The pipeline to which the methods will be added.
"""
for attr_name in dir(AutoConfig):
attr_value = getattr(AutoConfig, attr_name)
if callable(attr_value) and not attr_name.startswith("__"):
setattr(pipeline, attr_name, types.MethodType(attr_value, pipeline))
return pipeline
class AutoConfig:
def auto_load_textual_inversion(
self,
pretrained_model_name_or_path: Union[str, List[str]],
token: Optional[Union[str, List[str]]] = None,
base_model: Optional[Union[str, List[str]]] = None,
tokenizer=None,
text_encoder=None,
**kwargs,
):
r"""
Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
Automatic1111 formats are supported).
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Can be either one of the following or a list of them:
- Search keywords for pretrained model (for example `EasyNegative`).
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
pretrained model hosted on the Hub.
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
inversion weights.
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
token (`str` or `List[str]`, *optional*):
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
list, then `token` must also be a list of equal length.
text_encoder ([`~transformers.CLIPTextModel`], *optional*):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
If not specified, function will take self.tokenizer.
tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
weight_name (`str`, *optional*):
Name of a custom weight file. This should be used when:
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as `text_inv.bin`.
- The saved textual inversion file is in the Automatic1111 format.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):