-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathtrain.py
150 lines (122 loc) · 4.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import torch
import numpy as np
import sys
from src.crowd_count import CrowdCounter
from src import network
from src.data_loader import ImageDataLoader
from src.timer import Timer
from src import utils
from src.evaluate_model import evaluate_model
try:
from termcolor import cprint
except ImportError:
cprint = None
try:
from pycrayon import CrayonClient
except ImportError:
CrayonClient = None
def log_print(text, color=None, on_color=None, attrs=None):
if cprint is not None:
cprint(text, color=color, on_color=on_color, attrs=attrs)
else:
print(text)
method = 'mcnn'
dataset_name = 'shtechA'
output_dir = './saved_models/'
train_path = './data/formatted_trainval/shanghaitech_part_A_patches_9/train'
train_gt_path = './data/formatted_trainval/shanghaitech_part_A_patches_9/train_den'
val_path = './data/formatted_trainval/shanghaitech_part_A_patches_9/val'
val_gt_path = './data/formatted_trainval/shanghaitech_part_A_patches_9/val_den'
#training configuration
start_step = 0
end_step = 2000
lr = 0.00001
momentum = 0.9
disp_interval = 500
log_interval = 250
#Tensorboard config
use_tensorboard = False
save_exp_name = method + '_' + dataset_name + '_' + 'v1'
remove_all_log = False # remove all historical experiments in TensorBoard
exp_name = None # the previous experiment name in TensorBoard
# ------------
rand_seed = 64678
if rand_seed is not None:
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
# load net
net = CrowdCounter()
network.weights_normal_init(net, dev=0.01)
net.cuda()
net.train()
params = list(net.parameters())
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
# tensorboad
use_tensorboard = use_tensorboard and CrayonClient is not None
if use_tensorboard:
cc = CrayonClient(hostname='127.0.0.1')
if remove_all_log:
cc.remove_all_experiments()
if exp_name is None:
exp_name = save_exp_name
exp = cc.create_experiment(exp_name)
else:
exp = cc.open_experiment(exp_name)
# training
train_loss = 0
step_cnt = 0
re_cnt = False
t = Timer()
t.tic()
data_loader = ImageDataLoader(train_path, train_gt_path, shuffle=True, gt_downsample=True, pre_load=True)
data_loader_val = ImageDataLoader(val_path, val_gt_path, shuffle=False, gt_downsample=True, pre_load=True)
best_mae = sys.maxint
for epoch in range(start_step, end_step+1):
step = -1
train_loss = 0
for blob in data_loader:
step = step + 1
im_data = blob['data']
gt_data = blob['gt_density']
density_map = net(im_data, gt_data)
loss = net.loss
train_loss += loss.data[0]
step_cnt += 1
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % disp_interval == 0:
duration = t.toc(average=False)
fps = step_cnt / duration
gt_count = np.sum(gt_data)
density_map = density_map.data.cpu().numpy()
et_count = np.sum(density_map)
utils.save_results(im_data,gt_data,density_map, output_dir)
log_text = 'epoch: %4d, step %4d, Time: %.4fs, gt_cnt: %4.1f, et_cnt: %4.1f' % (epoch,
step, 1./fps, gt_count,et_count)
log_print(log_text, color='green', attrs=['bold'])
re_cnt = True
if re_cnt:
t.tic()
re_cnt = False
if (epoch % 2 == 0):
save_name = os.path.join(output_dir, '{}_{}_{}.h5'.format(method,dataset_name,epoch))
network.save_net(save_name, net)
#calculate error on the validation dataset
mae,mse = evaluate_model(save_name, data_loader_val)
if mae < best_mae:
best_mae = mae
best_mse = mse
best_model = '{}_{}_{}.h5'.format(method,dataset_name,epoch)
log_text = 'EPOCH: %d, MAE: %.1f, MSE: %0.1f' % (epoch,mae,mse)
log_print(log_text, color='green', attrs=['bold'])
log_text = 'BEST MAE: %0.1f, BEST MSE: %0.1f, BEST MODEL: %s' % (best_mae,best_mse, best_model)
log_print(log_text, color='green', attrs=['bold'])
if use_tensorboard:
exp.add_scalar_value('MAE', mae, step=epoch)
exp.add_scalar_value('MSE', mse, step=epoch)
exp.add_scalar_value('train_loss', train_loss/data_loader.get_num_samples(), step=epoch)