-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper.py
310 lines (257 loc) · 13.6 KB
/
paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# %% paper.py
# generating plots for the paper (and some exploratory stuff)
# by: Noah Syrkis
# %% Imports ######################################################################
import miiii as mi
import esch
import jax.numpy as jnp
import matplotlib.pyplot as plt
import os
from oeis import oeis
from einops import rearrange
from functools import partial
from jax import random, tree, vmap
from jax.numpy import fft
# %% Utils ####################################################################
def load_hash(hash, task):
# Create the directory if it doesn't exist
task2span = {"miiii": "factors", "nanda": "prime"}
span = task2span.get(task, "factors")
output_dir = f"paper/figs/{hash}"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
state, metrics, scope, cfg = mi.utils.get_metrics_and_params(hash, span)
print(span)
ds, task = mi.tasks.task_fn(rng, cfg, "remainder", span)
apply = partial(mi.model.apply_fn(cfg, ds, task, False), random.PRNGKey(0))
x = jnp.concat((ds.x.train, ds.x.eval))[ds.idxs.argsort()]
acts = apply(state.params, x)
return state, metrics, scope, cfg, ds, task, apply, x, acts
# %% Constants ####################################################################
rng = random.PRNGKey(0)
slice = 37
miiii_hash = "50115caac50c4fbfa6bce4cc" # hash of miiii task
masks_hash = "ba88bfb237924d5091006372" # "d4bfd7f829ed4a398f3b0a54" # hash of masked miiii
basis_hash = "7c2a10494ff64e66a9af2731" # basisi with shuffled y
nodro_hash = "c7f717cb50ac4762bd866831" # hash of miiii without dropout
nanda_hash = "0c848c1444264cbfa1a4de6e" # hash of nanda task
data = {hash: load_hash(hash, "miiii") for hash in [miiii_hash, masks_hash, basis_hash, nodro_hash]}
data[nanda_hash] = load_hash(nanda_hash, "nanda")
# %% Functions ##################################################################
def emb_svd(params, cfg, task):
tok_emb = params.embeds.tok_emb[: cfg.p]
U, S, V = jnp.linalg.svd(tok_emb)
S_50 = jnp.where((S / S.sum()).cumsum() < 0.5)[0].max()
S_90 = jnp.where((S / S.sum()).cumsum() < 0.9)[0].max()
# S = jnp.stack((p_S / p_S.sum(), f_S / f_S.sum()), axis=0).reshape((2, 1, -1))[:, :, :83]
quantiles = (S / S.sum()).cumsum()
left = esch.EdgeConfig(label="Vectors", show_on="all")
top = esch.EdgeConfig(
label=f"Left side singular value vectors capturing 50 % of the variance ({task})", show_on="all"
)
edge = esch.EdgeConfigs(left=left, top=top)
esch.mesh(U.T[quantiles < 0.5], path=f"paper/figs/{task}_U.svg", font_size=22, edge=edge)
# mesh singular value vectors
title = "Sorted singular values" if task == "nanda" else ""
bottom = esch.EdgeConfig(ticks=[(S_50.item(), "0.5"), (S_90.item(), "0.9")], show_on="first")
top = esch.EdgeConfig(label=title, show_on=[0])
left = esch.EdgeConfig(label=task, show_on="all")
edge = esch.EdgeConfigs(left=left, top=top, bottom=bottom)
esch.mesh(S[None, :], edge=edge, path=f"paper/figs/{task}_S.svg", font_size=24)
def emb_fft(params, cfg, hash):
m, f, s = fft_fn(params.embeds.tok_emb[:-1])
esch.mesh(m)
esch.mesh(fft_fn(mi.model.initializer(rng, params.embeds.tok_emb[:-1].shape))[0])
def fft_fn(matrix):
# Compute 2D FFT
fft_2d = fft.rfft2(matrix.T).T
magnitude_spectrum = jnp.abs(fft_2d)
# Center everything
magnitude_spectrum_centered = fft.fftshift(magnitude_spectrum)
# frequency activations
freq_activations = jnp.linalg.norm(magnitude_spectrum_centered, axis=1)
significant_freqs = freq_activations > freq_activations.mean()
return magnitude_spectrum_centered, freq_activations, significant_freqs
def plot_neurs(neurs, cfg, task):
neurs = rearrange(neurs[:, 0, -1, ...], "(x0 x1) n -> n x0 x1", x0=cfg.p, x1=cfg.p)
left = esch.EdgeConfig(label="𝑥₀", show_on="first")
bottom = esch.EdgeConfig(label="𝑥₁", show_on="first")
top = esch.EdgeConfig(label=f"Neurons over data ({task})", show_on=[1])
edge = esch.EdgeConfigs(left=left, bottom=bottom, top=top)
path = f"paper/figs/neurs_{cfg.p}_{task}"
esch.mesh(neurs[1:4, : slice - 8, : slice - 8], edge=edge, font_size=28, path=f"{path}_three.svg")
esch.mesh(neurs[42, : slice - 8, : slice - 8], edge=edge, font_size=28, path=f"{path}_one.svg")
left = esch.EdgeConfig(label="ω₀", show_on="first")
bottom = esch.EdgeConfig(label="ω₁", show_on="first")
top = esch.EdgeConfig(label=f"Neurons in Fourier space ({task})", show_on=[1])
edge = esch.EdgeConfigs(top=top, bottom=bottom, left=left)
path = f"paper/figs/neurs_{cfg.p}_{task}_fft"
esch.mesh(
fft.rfft2(neurs[1:4, :slice, :slice])[:, 1 : 1 + slice // 2, 1:],
edge=edge,
font_size=20,
path=f"{path}_three.svg",
)
esch.mesh(
fft.rfft2(neurs[42, :slice, :slice])[1 : 1 + slice // 2, 1:], edge=edge, font_size=20, path=f"{path}_one.svg"
)
def plot_grad_norms(scope, cfg, name):
leafs, struct = tree.flatten(scope.grad_norms)
ticks = [(i, w) for i, w in enumerate("e.p e.t a.k a.o a.q a.v w.i w.o e.u".split())]
right = esch.EdgeConfig(ticks=ticks, show_on="all") # type: ignore
bottom = esch.EdgeConfig(ticks=[(0, "1"), (49, str(cfg.epochs))], show_on="all", label="Time (linear)")
left = esch.EdgeConfig(label="Gradient Norm (L2)", show_on="all")
data = jnp.array(leafs)[:, 1000 :: cfg.epochs // 50]
data = data / data.max(axis=1, keepdims=True)
# data = data / data.sum(axis=0, keepdims=True)
data = data[[4, 5, 0, 1, 2, 3, 6, 7, 8], :]
top = esch.EdgeConfig(label="Gradient L2 norms for different weight parameters", show_on="all")
edge = esch.EdgeConfigs(right=right, left=left, bottom=bottom, top=top)
esch.mesh(data, edge=edge, path=f"paper/figs/grads_norms_{name}.svg", font_size=10)
# struct
def omega_series_fn(freqs, fname, log_scale=False):
# neuron_freqs = omega_aux(neuron_freqs)
# right = esch.EdgeConfig(label="Time", show_on="all")
left = esch.EdgeConfig(label="{ω}", show_on="all")
# right = esch.EdgeConfig(ticks=[(0, "0"), (1, "cos(1"), (2, "2")], show_on="all")
top = esch.EdgeConfig(label="Evolution of active frequencies (ω) through time (log)", show_on="all")
# bottom = esch.EdgeConfig(label=label_bottom, show_on="all")
edge = esch.EdgeConfigs(left=left, top=top)
data = freqs**2
esch.mesh(data / data.max(1)[:, None], path=f"paper/{fname}.svg", edge=edge, font_size=24)
def fourier_analysis(matrix):
# Compute 2D FFT
fft_2d = fft.rfft2(matrix.T).T
magnitude_spectrum = jnp.abs(fft_2d)
magnitude_spectrum_centered = fft.fftshift(magnitude_spectrum)
freq_activations = jnp.linalg.norm(magnitude_spectrum_centered, axis=1)
significant_freqs = freq_activations > freq_activations.mean() + freq_activations.std()
return magnitude_spectrum_centered, freq_activations, significant_freqs
def emb_fourier_plots(m, f, s, name):
# this is the full plot
top = esch.EdgeConfig(label="Embeddings in Fourier basis", show_on="all")
bottom = esch.EdgeConfig(label="Token", show_on="all")
left = esch.EdgeConfig(label="Fourier basis", show_on="all")
edge = esch.EdgeConfigs(top=top, bottom=bottom, left=left)
esch.mesh(m, path=f"paper/figs/fourier_{name}_m.svg", edge=edge, font_size=28)
# this is the line plot
ticks_bottom = [(i.item(), f"cos {i//2}") for i in jnp.where(s)[0] if i % 2 == 1]
ticks_top = [(0, "const")] + [(i.item(), f"sin {i//2}") for i in jnp.where(s)[0] if i % 2 == 0]
top = esch.EdgeConfig(ticks=ticks_top, show_on="all") # type: ignore
bottom = esch.EdgeConfig(ticks=ticks_bottom, show_on="all")
edge = esch.EdgeConfigs(top=top, bottom=bottom)
if name != "r":
esch.mesh(f[None, :] ** 2, path=f"paper/figs/fourier_{name}_f.svg", edge=edge, font_size=8)
else:
esch.mesh(f[None, :] ** 2, path=f"paper/figs/fourier_{name}_f.svg")
def omega_aux(freqs, kernel_size=3, log_scale=False):
print(freqs.shape)
length = (freqs.shape[1] - 1) * 3
epochs = freqs.shape[0]
# kernel_size = epochs // length
conv = lambda row: jnp.convolve(row, jnp.ones(kernel_size) / kernel_size, mode="valid") # noqa
freq_series = vmap(conv)(jnp.abs(freqs).T) # smooth this stuff
if log_scale:
freq_series = mi.plots.log_axis_array(freq_series.T, length)
else:
freq_series = freq_series[1:, :: epochs // length][..., :length]
freq_series /= freq_series.sum(axis=1, keepdims=True)
freq_variance = freq_series.var(axis=0)
freq_active = (freq_series > freq_series.mean() + freq_series.std()).sum(0)
# (freq_series > (freq_series.mean() + 1 * freq_series.std())).sum(0) # noqa
# print(freq_active)
# return the line as well
return freq_series, freq_variance, freq_active
def finding_fn(scope, cfg, task):
m, variance, active = omega_aux(scope.neuron_freqs[:, 0], log_scale=True)
# omega_series_fn(, "Time", "", fname="omega-series-1")
omega_series_fn(m, fname=f"figs/{task}_large_finding")
# tmp = m / m.max(0, keepdims=True)
# tmp = (tmp > (tmp.mean(0, keepdims=True) + tmp.std(0, keepdims=True))).astype(float).sum(0, keepdims=True) ** 2
tmp = active[None, :] ** 1.5
left = esch.EdgeConfig(label="|{ω}|", show_on=[0])
bottom = esch.EdgeConfig(label="Time", show_on="all", ticks=[(1, "1"), (56 * 3 - 2, str(cfg.epochs))])
top = esch.EdgeConfig(
ticks=[(i, str(int((tmp.squeeze()[i] ** 0.5).item()))) for i in range(1, 56 * 3, 10)],
show_on="first",
)
edge = esch.EdgeConfigs(left=left, bottom=bottom, top=top)
esch.mesh(
tmp,
path=f"paper/figs/{task}_small_finding.svg",
edge=edge,
font_size=22,
)
def wei_plot(acts, cfg, task):
wei = rearrange(acts.wei[:, 0, :, -1, 0], "(x0 x1) h -> h x0 x1", x0=cfg.p, x1=cfg.p)
wei = wei[:, :slice, :slice]
top = esch.EdgeConfig(label=[f"Head {i+1}" for i in range(wei.shape[0])] if task != "nanda" else "", show_on="all")
left = esch.EdgeConfig(label="𝑥₀", show_on="first")
right = esch.EdgeConfig(label=task, show_on="last")
bottom = esch.EdgeConfig(label="𝑥₁", show_on="first")
edge = esch.EdgeConfigs(left=left, bottom=bottom, top=top, right=right)
esch.mesh(wei, edge=edge, path=f"paper/figs/{task}_wei.svg", font_size=28)
def final_epoch_neuron_freq(acts):
pass
# wei_plot(data[nanda_hash][-1], data[nanda_hash][3], "nanda")
# %% work space #################################################################
def plot_hash(hash, name):
state, metrics, scope, cfg, ds, task, apply, x, acts = data[hash]
plot_neurs(acts.ffwd, cfg, name)
emb_fourier_plots(*fourier_analysis(state.params.embeds.tok_emb[:-1]), name) # type: ignore
emb_svd(state.params, cfg, name) # type: ignore
wei_plot(acts, cfg, name)
if name not in ["basis", "nanda", "nodro"]:
plot_grad_norms(scope, cfg, name)
finding_fn(scope, cfg, name)
if name not in ["nanda"]:
mi.plots.plot_run(metrics, ds, cfg, task, hash, font_size=16, log_axis=True)
pass
# plot_hash(miiii_hash, "miiii")
# plot_hash(masks_hash, "masks")
# plot_hash(basis_hash, "basis")
# plot_hash(nanda_hash, "nanda")
# plot_hash(nodro_hash, "nodro")
# %% Positional embeddings analysis
miiii_pos_emb = data[miiii_hash][0].params.embeds.pos_emb[:2][:, :slice]
nanda_pos_emb = data[nanda_hash][0].params.embeds.pos_emb[:2][:, :slice] # TODO: THIS SHOLD BE NANDA
pos_emb = jnp.stack((nanda_pos_emb, miiii_pos_emb), axis=0)
label = f"First {slice} dimensions of position embeddings for the factors (top) and prime (bottom) tasks"
left = esch.EdgeConfig(label=["nanda", "miiii"], show_on="all")
top = esch.EdgeConfig(label="Positional embeddings", show_on=[0])
edge = esch.EdgeConfigs(left=left, top=top)
esch.mesh(pos_emb, edge=edge, path="paper/figs/pos_emb.svg", font_size=12)
# %% Model independent plots ######################################################
_cfg = mi.utils.Conf(p=11)
rng = random.PRNGKey(0)
ds, task = mi.tasks.task_fn(rng, _cfg, "remainder", "factors")
x = jnp.concat((ds.x.train, ds.x.eval), axis=0)[ds.idxs.argsort()]
y = jnp.concat((ds.y.train, ds.y.eval), axis=0)[ds.idxs.argsort()]
left = esch.EdgeConfig(label="𝑥₀", show_on="first")
bottom = esch.EdgeConfig(label="𝑥₁", show_on=[5])
top = esch.EdgeConfig(label="Representation of {(𝑥₀, 𝑥₁)} in base-11", show_on=[5])
edge = esch.EdgeConfigs(left=left, bottom=bottom, top=top)
tmp = rearrange(x[:, :2], "(x1 x0) seq -> x0 x1 seq ", x0=_cfg.p, x1=_cfg.p)
esch.mesh(tmp, edge=edge, path="paper/figs/x_11_plot.svg", font_size=14)
# %% Y plots
nanda_cfg = mi.utils.Conf(p=11)
nanda_ds, _ = mi.tasks.task_fn(random.PRNGKey(0), nanda_cfg, "remainder", "prime")
nanda_y = jnp.concat((nanda_ds.y.train, nanda_ds.y.eval), axis=0)[nanda_ds.idxs.argsort()].reshape(
(nanda_cfg.p, nanda_cfg.p)
)
primes = jnp.array(oeis["A000040"][1 : y.shape[1] + 1])
bottom = esch.EdgeConfig(label=[f"𝑥 mod {factor}" for factor in primes] + ["𝑥 mod 𝑝"], show_on="all")
top = esch.EdgeConfig(ticks=[(i, str(i)) for i in range(11)], show_on="first")
left = esch.EdgeConfig(ticks=[(i, str(i)) for i in range(11)], show_on="first")
edge = esch.EdgeConfigs(top=top, left=left, bottom=bottom)
_data = jnp.concat((rearrange(y, "(x0 x1) task -> task x0 x1 ", x0=11, x1=11), nanda_y[None, ...]), axis=0)
# data /= data.max(axis=(1, 2))[:, None, None]
esch.mesh(_data, edge=edge, path="paper/figs/y_11_plot.svg", font_size=13)
# %% Polar Plots
primes = jnp.array(oeis["A000040"][1:1000])
ps = jnp.array(primes[primes < (113**2)])
_11s = jnp.arange(0, 113**2, 11)
_7_23 = jnp.concat((jnp.arange(0, 113**2, 13), jnp.arange(0, 113**2, 23)))
plt.style.use("default")
mi.plots.small_multiples(fnames=["n", "t", "n"], seqs=[_7_23, _11s, ps], f_name="polar", n_rows=1, n_cols=3)
# plt.close()