forked from BraginaT/cgminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver-minion.c
2762 lines (2351 loc) · 76.8 KB
/
driver-minion.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2013-2014 Andrew Smith - BlackArrow Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include "compat.h"
#include "miner.h"
#ifndef LINUX
static void minion_detect(__maybe_unused bool hotplug)
{
}
#else
#include <unistd.h>
#include <linux/spi/spidev.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <poll.h>
#define MINION_SPI_BUS 0
#define MINION_SPI_CHIP 0
#define MINION_SPI_SPEED 2000000
#define MINION_SPI_BUFSIZ 1024
#define MINION_CHIPS 32
#define MINION_CORES 99
/*
* TODO: These will need adjusting for final hardware
* Look them up and calculate them?
*/
#define MINION_QUE_HIGH 4
#define MINION_QUE_LOW 2
#define MINION_FFL " - from %s %s() line %d"
#define MINION_FFL_HERE __FILE__, __func__, __LINE__
#define MINION_FFL_PASS file, func, line
#define MINION_FFL_ARGS __maybe_unused const char *file, \
__maybe_unused const char *func, \
__maybe_unused const int line
#define minion_txrx(_task) _minion_txrx(minioncgpu, minioninfo, _task, MINION_FFL_HERE)
#define do_ioctl(_obuf, _osiz, _rbuf, _rsiz) _do_ioctl(minioninfo, _obuf, _osiz, _rbuf, _rsiz, MINION_FFL_HERE)
#define MINION_SYS_REGS 0x00
#define MINION_CORE_REGS 0x10
#define MINION_RES_BUF 0x20
#define MINION_CMD_QUE 0x30
#define MINION_NONCE_RANGES 0x70
#define DATA_SIZ (sizeof(uint32_t))
// All SYS data sizes are DATA_SIZ
#define MINION_SYS_CHIP_SIG 0x00
#define MINION_SYS_CHIP_STA 0x01
#define MINION_SYS_TEMP_CTL 0x03
#define MINION_SYS_FREQ_CTL 0x04
#define MINION_SYS_NONCE_LED 0x05
#define MINION_SYS_MISC_CTL 0x06
#define MINION_SYS_RSTN_CTL 0x07
#define MINION_SYS_INT_ENA 0x08
#define MINION_SYS_INT_CLR 0x09
#define MINION_SYS_INT_STA 0x0a
#define MINION_SYS_FIFO_STA 0x0b
#define MINION_SYS_QUE_TRIG 0x0c
#define MINION_SYS_BUF_TRIG 0x0d
// All SYS data sizes are DATA_SIZ
#define MINION_SYS_SIZ DATA_SIZ
// Header Pin 18 = GPIO5 = BCM 24
#define MINION_GPIO_RESULT_INT_PIN 24
#define MINION_GPIO_SYS "/sys/class/gpio"
#define MINION_GPIO_ENA "/export"
#define MINION_GPIO_ENA_VAL "%d"
#define MINION_GPIO_DIS "/unexport"
#define MINION_GPIO_PIN "/gpio%d"
#define MINION_GPIO_DIR "/direction"
#define MINION_GPIO_DIR_READ "in"
#define MINION_GPIO_DIR_WRITE "out"
#define MINION_GPIO_EDGE "/edge"
#define MINION_GPIO_EDGE_NONE "none"
#define MINION_GPIO_EDGE_RISING "rising"
#define MINION_GPIO_EDGE_FALLING "falling"
#define MINION_GPIO_EDGE_BOTH "both"
#define MINION_GPIO_ACT "/active_low"
#define MINION_GPIO_ACT_LO "1"
#define MINION_GPIO_ACT_HI "0"
#define MINION_GPIO_VALUE "/value"
#define MINION_RESULT_INT 0x01
#define MINION_RESULT_FULL_INT 0x02
#define MINION_CMD_INT 0x04
#define MINION_CMD_FULL_INT 0x08
#define MINION_TEMP_LOW_INT 0x10
#define MINION_TEMP_HI_INT 0x20
#define MINION_ALL_INT MINION_RESULT_INT | \
MINION_RESULT_FULL_INT | \
MINION_CMD_INT | \
MINION_CMD_FULL_INT | \
MINION_TEMP_LOW_INT | \
MINION_TEMP_HI_INT
#define RSTN_CTL_RESET_CORES 0x01
#define RSTN_CTL_FLUSH_RESULTS 0x02
#define RSTN_CTL_FLUSH_CMD_QUEUE 0x04
#define RSTN_CTL_SPI_SW_RSTN 0x08
#define RSTN_CTL_SHA_MGR_RESET 0x10
// Init
#define SYS_RSTN_CTL_INIT (RSTN_CTL_RESET_CORES | \
RSTN_CTL_FLUSH_RESULTS | \
RSTN_CTL_FLUSH_CMD_QUEUE | \
RSTN_CTL_SPI_SW_RSTN | \
RSTN_CTL_SHA_MGR_RESET)
// LP
#define SYS_RSTN_CTL_FLUSH (RSTN_CTL_RESET_CORES | \
RSTN_CTL_SPI_SW_RSTN | \
RSTN_CTL_FLUSH_CMD_QUEUE)
// enable 'no nonce' report
#define SYS_MISC_CTL_DEFAULT 0x04
// CORE data size is DATA_SIZ
#define MINION_CORE_ENA0_31 0x10
#define MINION_CORE_ENA32_63 0x11
#define MINION_CORE_ENA64_95 0x12
#define MINION_CORE_ENA96_98 0x13
#define MINION_CORE_ACT0_31 0x14
#define MINION_CORE_ACT32_63 0x15
#define MINION_CORE_ACT64_95 0x16
#define MINION_CORE_ACT96_98 0x17
// All CORE data sizes are DATA_SIZ
#define MINION_CORE_SIZ DATA_SIZ
// RES data size is minion_result
#define MINION_RES_DATA 0x20
#define MINION_RES_PEEK 0x21
// QUE data size is minion_que
#define MINION_QUE_0 0x30
#define MINION_QUE_R 0x31
// RANGE data sizes are DATA_SIZ
#define MINION_NONCE_START 0x70
#define MINION_NONCE_RANGE 0x71
// This must be >= max txsiz + max rxsiz
#define MINION_BUFSIZ 1024
#define u8tou32(_c, _off) (((uint8_t *)(_c))[(_off)+0] + \
((uint8_t *)(_c))[(_off)+1] * 0x100 + \
((uint8_t *)(_c))[(_off)+2] * 0x10000 + \
((uint8_t *)(_c))[(_off)+3] * 0x1000000 )
#define MINION_ADDR_WRITE 0x7f
#define MINION_ADDR_READ 0x80
#define READ_ADDR(_reg) ((_reg) | MINION_ADDR_READ)
#define WRITE_ADDR(_reg) ((_reg) & MINION_ADDR_WRITE)
#define IS_ADDR_READ(_reg) (((_reg) & MINION_ADDR_READ) == MINION_ADDR_READ)
#define IS_ADDR_WRITE(_reg) (((_reg) & MINION_ADDR_READ) == 0)
#define SET_HEAD_WRITE(_h, _reg) ((_h)->reg) = WRITE_ADDR(_reg)
#define SET_HEAD_READ(_h, _reg) ((_h)->reg) = READ_ADDR(_reg)
#define SET_HEAD_SIZ(_h, _siz) \
do { \
((_h)->siz)[0] = (uint8_t)((_siz) & 0xff); \
((_h)->siz)[1] = (uint8_t)(((_siz) & 0xff00) >> 8); \
} while (0)
struct minion_header {
uint8_t chip;
uint8_t reg;
uint8_t siz[2];
uint8_t data[4]; // placeholder
};
#define HSIZE() (sizeof(struct minion_header) - 4)
#define MINION_NOCHIP_SIG 0x00000000
#define MINION_CHIP_SIG 0xb1ac8a44
/*
* Number of times to try and get the SIG with each chip,
* if the chip returns neither of the above values
* TODO: maybe need some reset between tries, to handle a shift value?
*/
#define MINION_SIG_TRIES 3
/*
* TODO: Finding these means the chip is there - but how to fix it?
* The extra &'s are to ensure there is no sign bit issue since
* the sign bit carry in a C bit-shift is compiler dependent
*/
#define MINION_CHIP_SIG_SHIFT1 (((MINION_CHIP_SIG & 0x0000ffff) << 16) & 0xffff0000)
#define MINION_CHIP_SIG_SHIFT2 (((MINION_CHIP_SIG & 0x00ffffff) << 8) & 0xffffff00)
#define MINION_CHIP_SIG_SHIFT3 (((MINION_CHIP_SIG & 0xffffff00) >> 8) & 0x00ffffff)
#define MINION_CHIP_SIG_SHIFT4 (((MINION_CHIP_SIG & 0xffff0000) >> 16) & 0x0000ffff)
#define STA_TEMP(_sta) ((uint16_t)((_sta)[3] & 0x1f))
#define STA_CORES(_sta) ((uint16_t)((_sta)[2]))
#define STA_FREQ(_sta) ((uint32_t)((_sta)[1]) * 0x100 + (uint32_t)((_sta)[0]))
// Randomly between 1s and 2s per chip
#define MINION_STATS_UPDATE_TIME_mS 1000
#define MINION_STATS_UPDATE_RAND_mS 1000
struct minion_status {
uint16_t temp;
uint16_t cores;
uint32_t freq;
struct timeval last;
};
// TODO: untested/unused
#define ENABLE_CORE(_core, _n) ((_core)->core[_n >> 4] |= (1 << (_n % 8)))
#define CORE_IDLE(_core, _n) ((_core)->core[_n >> 4] & (1 << (_n % 8)))
#define FIFO_RES(_fifo, _off) ((_fifo)[(_off) + 0])
#define RES_GOLD(_res) ((((_res)->status[3]) & 0x80) == 0)
#define RES_CHIP(_res) (((_res)->status[3]) & 0x1f)
#define RES_CORE(_res) ((_res)->status[2])
#define RES_TASK(_res) ((int)((_res)->status[1]) * 0x100 + (int)((_res)->status[0]))
#define RES_NONCE(_res) u8tou32((_res)->nonce, 0)
/*
* This is only valid since we avoid using task_id 0 for work
* However, it isn't really necessary since we only request
* the number of results the result buffer says it has
* However, it is a simple failsafe
*/
#define IS_RESULT(_res) ((_res)->status[1] || (_res)->status[0])
struct minion_result {
uint8_t status[DATA_SIZ];
uint8_t nonce[DATA_SIZ];
};
#define MINION_RES_DATA_SIZ sizeof(struct minion_result)
#define MIDSTATE_BYTES 32
#define MERKLE7_OFFSET 64
#define MERKLE_BYTES 12
#define MINION_MAX_TASK_ID 0xffff
struct minion_que {
uint8_t task_id[2];
uint8_t reserved[2];
uint8_t midstate[MIDSTATE_BYTES];
uint8_t merkle7[DATA_SIZ];
uint8_t ntime[DATA_SIZ];
uint8_t bits[DATA_SIZ];
};
/*
* Max time to wait before checking the task list
* Required, since only urgent tasks trigger an immediate check
* TODO: ? for 2TH/s
*/
#define MINION_TASK_mS 8
/*
* Max time to wait before checking the result list for nonces
* This can be long since it's only a failsafe
* cgsem_post is always sent if there are nonces ready to check
*/
#define MINION_NONCE_mS 888
// Number of results to make a GPIO interrupt
//#define MINION_RESULT_INT_SIZE 1
#define MINION_RESULT_INT_SIZE 2
/*
* Max time to wait before checking for results
* The interrupt doesn't occur until MINION_RESULT_INT_SIZE results are found
* See comment in minion_spi_reply() at poll()
*/
#define MINION_REPLY_mS 88
/*
* Max time to wait before returning the amount of work done
* A result interrupt will send a trigger for this also
* See comment in minion_scanwork()
* This avoids the cgminer master work loop spinning doing nothing
*/
#define MINION_SCAN_mS 88
#define ALLOC_WITEMS 4096
typedef struct witem {
struct work *work;
uint32_t task_id;
struct timeval sent;
int nonces;
bool urgent;
bool stale; // if stale, don't decrement count_up when discarded
} WITEM;
#define ALLOC_TITEMS 256
typedef struct titem {
uint8_t chip;
bool write;
uint8_t address;
uint32_t task_id;
uint32_t wsiz;
uint32_t osiz;
uint32_t rsiz;
uint8_t wbuf[MINION_BUFSIZ];
uint8_t obuf[MINION_BUFSIZ];
uint8_t rbuf[MINION_BUFSIZ];
int reply;
bool urgent;
uint8_t work_state;
struct work *work;
} TITEM;
#define ALLOC_RITEMS 256
typedef struct ritem {
int chip;
int core;
uint32_t task_id;
uint32_t nonce;
/*
* Only once per task_id if no nonces were found
* Sent with core = 0
* However, currently it always sends it at the end of every task
* TODO: code assumes it doesn't - change later when we
* see what the final hardware does (minor code performance gain)
*/
bool no_nonce;
} RITEM;
typedef struct k_item {
const char *name;
struct k_item *prev;
struct k_item *next;
void *data;
} K_ITEM;
#define DATAW(_item) ((WITEM *)(_item->data))
#define DATAT(_item) ((TITEM *)(_item->data))
#define DATAR(_item) ((RITEM *)(_item->data))
typedef struct k_list {
const char *name;
bool is_store;
cglock_t *lock;
struct k_item *head;
struct k_item *tail;
size_t siz; // item data size
int total; // total allocated
int count; // in this list
int count_up; // incremented every time one is added
int allocate; // number to intially allocate and each time we run out
bool do_tail; // store tail
} K_LIST;
/*
* K_STORE is for a list of items taken from a K_LIST
* The restriction is, a K_STORE must not allocate new items,
* only the K_LIST should do that
* i.e. all K_STORE items came from a K_LIST
*/
#define K_STORE K_LIST
#define K_WLOCK(_list) cg_wlock(_list->lock)
#define K_WUNLOCK(_list) cg_wunlock(_list->lock)
#define K_RLOCK(_list) cg_rlock(_list->lock)
#define K_RUNLOCK(_list) cg_runlock(_list->lock)
// Set this to 0 to remove iostats processing
#define DO_IO_STATS 1
#if DO_IO_STATS
#define IO_STAT_NOW(_tv) cgtime(_tv)
#define IO_STAT_STORE(_sta, _fin, _lsta, _lfin, _tsd, _buf, _siz, _reply, _ioc) \
do { \
double _diff, _ldiff, _lwdiff, _1time; \
int _off; \
_diff = us_tdiff(_fin, _sta); \
_ldiff = us_tdiff(_lfin, _lsta); \
_lwdiff = us_tdiff(_sta, _lsta); \
_1time = us_tdiff(_tsd, _lfin); \
_off = (int)(_buf[1]) + (_reply >= 0 ? 0 : 0x100); \
minioninfo->summary.count++; \
minioninfo->summary.tsd += _1time; \
minioninfo->iostats[_off].count++; \
minioninfo->iostats[_off].tsd += _1time; \
if (_diff <= 0) { \
minioninfo->summary.zero_delay++; \
minioninfo->iostats[_off].zero_delay++; \
} else { \
minioninfo->summary.total_delay += _diff; \
if (minioninfo->summary.max_delay < _diff) \
minioninfo->summary.max_delay = _diff; \
if (minioninfo->summary.min_delay == 0 || \
minioninfo->summary.min_delay > _diff) \
minioninfo->summary.min_delay = _diff; \
minioninfo->iostats[_off].total_delay += _diff; \
if (minioninfo->iostats[_off].max_delay < _diff) \
minioninfo->iostats[_off].max_delay = _diff; \
if (minioninfo->iostats[_off].min_delay == 0 || \
minioninfo->iostats[_off].min_delay > _diff) \
minioninfo->iostats[_off].min_delay = _diff; \
} \
if (_ldiff <= 0) { \
minioninfo->summary.zero_dlock++; \
minioninfo->iostats[_off].zero_dlock++; \
} else { \
minioninfo->summary.total_dlock += _ldiff; \
if (minioninfo->summary.max_dlock < _ldiff) \
minioninfo->summary.max_dlock = _ldiff; \
if (minioninfo->summary.min_dlock == 0 || \
minioninfo->summary.min_dlock > _ldiff) \
minioninfo->summary.min_dlock = _ldiff; \
minioninfo->iostats[_off].total_dlock += _ldiff; \
if (minioninfo->iostats[_off].max_dlock < _ldiff) \
minioninfo->iostats[_off].max_dlock = _ldiff; \
if (minioninfo->iostats[_off].min_dlock == 0 || \
minioninfo->iostats[_off].min_dlock > _ldiff) \
minioninfo->iostats[_off].min_dlock = _ldiff; \
} \
minioninfo->summary.total_dlwait += _lwdiff; \
minioninfo->iostats[_off].total_dlwait += _lwdiff; \
if (_siz == 0) { \
minioninfo->summary.zero_bytes++; \
minioninfo->iostats[_off].zero_bytes++; \
} else { \
minioninfo->summary.total_bytes += _siz; \
if (minioninfo->summary.max_bytes < _siz) \
minioninfo->summary.max_bytes = _siz; \
if (minioninfo->summary.min_bytes == 0 || \
minioninfo->summary.min_bytes > _siz) \
minioninfo->summary.min_bytes = _siz; \
minioninfo->iostats[_off].total_bytes += _siz; \
if (minioninfo->iostats[_off].max_bytes < _siz) \
minioninfo->iostats[_off].max_bytes = _siz; \
if (minioninfo->iostats[_off].min_bytes == 0 || \
minioninfo->iostats[_off].min_bytes > _siz) \
minioninfo->iostats[_off].min_bytes = _siz; \
} \
} while (0);
typedef struct iostat {
uint64_t count; // total ioctl()
double total_delay; // total elapsed ioctl()
double min_delay;
double max_delay;
uint64_t zero_delay; // how many had <= 0 delay
// Above but including locking
double total_dlock;
double min_dlock;
double max_dlock;
uint64_t zero_dlock;
// Total time waiting to get lock
double total_dlwait;
// these 3 fields are ignored for now since all are '1'
uint64_t total_ioc; // SPI_IOC_MESSAGE(x)
uint64_t min_ioc;
uint64_t max_ioc;
uint64_t total_bytes; // ioctl() bytes
uint64_t min_bytes;
uint64_t max_bytes;
uint64_t zero_bytes; // how many had siz == 0
double tsd; // total doing one extra cgtime() each time
} IOSTAT;
#else
#define IO_STAT_NOW(_tv)
#define IO_STAT_STORE(_sta, _fin, _lsta, _lfin, _tsd, _buf, _siz, _reply, _ioc)
#endif
struct minion_info {
struct thr_info spiw_thr;
struct thr_info spir_thr;
struct thr_info res_thr;
pthread_mutex_t spi_lock;
pthread_mutex_t sta_lock;
cgsem_t task_ready;
cgsem_t nonce_ready;
cgsem_t scan_work;
int spifd;
char gpiointvalue[64];
int gpiointfd;
// TODO: need to track disabled chips - done?
int chips;
bool chip[MINION_CHIPS];
uint32_t next_task_id;
// Stats
uint64_t chip_nonces[MINION_CHIPS];
uint64_t chip_good[MINION_CHIPS];
uint64_t chip_bad[MINION_CHIPS];
uint64_t core_good[MINION_CHIPS][MINION_CORES];
uint64_t core_bad[MINION_CHIPS][MINION_CORES];
struct minion_status chip_status[MINION_CHIPS];
pthread_mutex_t nonce_lock;
uint64_t new_nonces;
uint64_t ok_nonces;
uint64_t untested_nonces;
uint64_t tested_nonces;
// Work items
K_LIST *wfree_list;
K_STORE *wwork_list;
K_STORE *wchip_list[MINION_CHIPS];
// Task list
K_LIST *tfree_list;
K_STORE *task_list;
K_STORE *treply_list;
// Nonce replies
K_LIST *rfree_list;
K_STORE *rnonce_list;
struct timeval last_did;
#if DO_IO_STATS
// Total
IOSTAT summary;
// Two for each command plus wasted extras i.e. direct/fast lookup
// No error uses 0x0 to 0xff, error uses 0x100 to 0x1ff
IOSTAT iostats[0x200];
#endif
bool initialised;
};
static void alloc_items(K_LIST *list, MINION_FFL_ARGS)
{
K_ITEM *item;
int i;
if (list->is_store) {
quithere(1, "List %s store can't %s" MINION_FFL,
list->name, __func__, MINION_FFL_PASS);
}
item = calloc(list->allocate, sizeof(*item));
if (!item) {
quithere(1, "List %s failed to calloc %d new items - total was %d",
list->name, list->allocate, list->total);
}
list->total += list->allocate;
list->count = list->allocate;
list->count_up = list->allocate;
item[0].name = list->name;
item[0].prev = NULL;
item[0].next = &(item[1]);
for (i = 1; i < list->allocate-1; i++) {
item[i].name = list->name;
item[i].prev = &item[i-1];
item[i].next = &item[i+1];
}
item[list->allocate-1].name = list->name;
item[list->allocate-1].prev = &(item[list->allocate-2]);
item[list->allocate-1].next = NULL;
list->head = item;
if (list->do_tail)
list->tail = &(item[list->allocate-1]);
item = list->head;
while (item) {
item->data = calloc(1, list->siz);
if (!(item->data))
quithere(1, "List %s failed to calloc item data", list->name);
item = item->next;
}
}
static K_STORE *new_store(K_LIST *list)
{
K_STORE *store;
store = calloc(1, sizeof(*store));
if (!store)
quithere(1, "Failed to calloc store for %s", list->name);
store->is_store = true;
store->lock = list->lock;
store->name = list->name;
store->do_tail = list->do_tail;
return store;
}
static K_LIST *new_list(const char *name, size_t siz, int allocate, bool do_tail, MINION_FFL_ARGS)
{
K_LIST *list;
if (allocate < 1)
quithere(1, "Invalid new list %s with allocate %d must be > 0", name, allocate);
list = calloc(1, sizeof(*list));
if (!list)
quithere(1, "Failed to calloc list %s", name);
list->is_store = false;
list->lock = calloc(1, sizeof(*(list->lock)));
if (!(list->lock))
quithere(1, "Failed to calloc lock for list %s", name);
cglock_init(list->lock);
list->name = name;
list->siz = siz;
list->allocate = allocate;
list->do_tail = do_tail;
alloc_items(list, MINION_FFL_PASS);
return list;
}
static K_ITEM *k_get_head(K_LIST *list, MINION_FFL_ARGS)
{
K_ITEM *item;
if (!(list->head))
alloc_items(list, MINION_FFL_PASS);
item = list->head;
list->head = item->next;
if (list->head)
list->head->prev = NULL;
else {
if (list->do_tail)
list->tail = NULL;
}
item->prev = item->next = NULL;
list->count--;
return item;
}
#define k_free_head k_add_head
static void k_add_head(K_LIST *list, K_ITEM *item, MINION_FFL_ARGS)
{
if (item->name != list->name) {
quithere(1, "List %s can't %s a %s item" MINION_FFL,
list->name, __func__, item->name, MINION_FFL_PASS);
}
item->prev = NULL;
item->next = list->head;
if (list->head)
list->head->prev = item;
list->head = item;
if (list->do_tail) {
if (!(list->tail))
list->tail = item;
}
list->count++;
list->count_up++;
}
/*
// TODO: remove later - it slows it down (of course) - only for debugging
static void k_free_head(K_LIST *list, K_ITEM *item, MINION_FFL_ARGS)
{
memset(item->data, 0xff, list->siz);
k_add_head(list, item, MINION_FFL_PASS);
}
*/
static void k_remove(K_LIST *list, K_ITEM *item)
{
if (item->prev)
item->prev->next = item->next;
if (item->next)
item->next->prev = item->prev;
if (list->head == item)
list->head = item->next;
if (list->do_tail) {
if (list->tail == item)
list->tail = item->prev;
}
item->prev = item->next = NULL;
list->count--;
}
static void ready_work(struct cgpu_info *minioncgpu, struct work *work)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item = NULL;
K_WLOCK(minioninfo->wfree_list);
item = k_get_head(minioninfo->wfree_list, MINION_FFL_HERE);
DATAW(item)->work = work;
DATAW(item)->task_id = 0;
memset(&(DATAW(item)->sent), 0, sizeof(DATAW(item)->sent));
DATAW(item)->nonces = 0;
DATAW(item)->urgent = false;
k_add_head(minioninfo->wwork_list, item, MINION_FFL_HERE);
K_WUNLOCK(minioninfo->wfree_list);
}
static bool oldest_nonce(struct cgpu_info *minioncgpu, int *chip, int *core, uint32_t *task_id, uint32_t *nonce, bool *no_nonce)
{
struct minion_info *minioninfo = (struct minion_info *)(minioncgpu->device_data);
K_ITEM *item = NULL;
bool found = false;
K_WLOCK(minioninfo->rnonce_list);
item = minioninfo->rnonce_list->tail;
if (item) {
// unlink from res
k_remove(minioninfo->rnonce_list, item);
found = true;
*chip = DATAR(item)->chip;
*core = DATAR(item)->core;
*task_id = DATAR(item)->task_id;
*nonce = DATAR(item)->nonce;
*no_nonce = DATAR(item)->no_nonce;
k_free_head(minioninfo->rfree_list, item, MINION_FFL_HERE);
}
K_WUNLOCK(minioninfo->rnonce_list);
return found;
}
static const char *addr2txt(uint8_t addr)
{
switch (addr) {
case READ_ADDR(MINION_SYS_CHIP_SIG):
return "RChipSig";
case READ_ADDR(MINION_SYS_CHIP_STA):
return "RChipSta";
case WRITE_ADDR(MINION_SYS_MISC_CTL):
return "WMiscCtrl";
case WRITE_ADDR(MINION_SYS_RSTN_CTL):
return "WResetCtrl";
case READ_ADDR(MINION_SYS_FIFO_STA):
return "RFifoSta";
case READ_ADDR(MINION_CORE_ENA0_31):
return "RCoreEna0-31";
case WRITE_ADDR(MINION_CORE_ENA0_31):
return "WCoreEna0-31";
case READ_ADDR(MINION_CORE_ENA32_63):
return "RCoreEna32-63";
case WRITE_ADDR(MINION_CORE_ENA32_63):
return "WCoreEna32-63";
case READ_ADDR(MINION_CORE_ENA64_95):
return "RCoreEna64-95";
case WRITE_ADDR(MINION_CORE_ENA64_95):
return "WCoreEna64-95";
case READ_ADDR(MINION_CORE_ENA96_98):
return "RCoreEna96-98";
case WRITE_ADDR(MINION_CORE_ENA96_98):
return "WCoreEna96-98";
case READ_ADDR(MINION_RES_DATA):
return "RResData";
case WRITE_ADDR(MINION_QUE_0):
return "WQueWork";
case READ_ADDR(MINION_NONCE_START):
return "RNonceStart";
case WRITE_ADDR(MINION_NONCE_START):
return "WNonceStart";
case READ_ADDR(MINION_NONCE_RANGE):
return "RNonceRange";
case WRITE_ADDR(MINION_NONCE_RANGE):
return "WNonceRange";
case READ_ADDR(MINION_SYS_INT_STA):
return "RIntSta";
case WRITE_ADDR(MINION_SYS_INT_ENA):
return "WIntEna";
case WRITE_ADDR(MINION_SYS_INT_CLR):
return "WIntClear";
case WRITE_ADDR(MINION_SYS_BUF_TRIG):
return "WResTrigger";
case WRITE_ADDR(MINION_SYS_QUE_TRIG):
return "WCmdTrigger";
}
// gcc warning if this is in default:
if (IS_ADDR_READ(addr))
return "RUnhandled";
else
return "WUnhandled";
}
// For display_ioctl()
#define IOCTRL_LOG LOG_DEBUG
// For all other debug so it can easily be switched always on
#define MINION_LOG LOG_DEBUG
/*
static void display_ioctl(int reply, uint32_t osiz, uint8_t *obuf, uint32_t rsiz, uint8_t *rbuf)
{
struct minion_result *res;
const char *name, *dir, *ex;
char buf[1024];
int i, rescount;
name = addr2txt(obuf[1]);
if (IS_ADDR_READ(obuf[1]))
dir = "from";
else
dir = "to";
buf[0] = '\0';
ex = "";
switch (obuf[1]) {
case READ_ADDR(MINION_SYS_CHIP_SIG):
case READ_ADDR(MINION_SYS_CHIP_STA):
break;
case WRITE_ADDR(MINION_SYS_MISC_CTL):
case WRITE_ADDR(MINION_SYS_RSTN_CTL):
if (osiz > HSIZE()) {
ex = " wrote ";
__bin2hex(buf, obuf + HSIZE(), osiz - HSIZE());
} else
ex = " wrote nothing";
break;
default:
if (IS_ADDR_WRITE(obuf[1])) {
if (osiz > HSIZE()) {
ex = " wrote ";
__bin2hex(buf, obuf + HSIZE(), osiz - HSIZE());
} else
ex = " wrote nothing";
}
break;
}
if (reply < 0) {
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
applog(IOCTRL_LOG, " reply was error %d", reply);
} else {
if (IS_ADDR_WRITE(obuf[1])) {
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
applog(IOCTRL_LOG, " write ret was %d", reply);
} else {
switch (obuf[1]) {
case READ_ADDR(MINION_RES_DATA):
rescount = (int)((float)rsiz / (float)MINION_RES_DATA_SIZ);
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
for (i = 0; i < rescount; i++) {
res = (struct minion_result *)(rbuf + osiz - rsiz + (i * MINION_RES_DATA_SIZ));
if (!IS_RESULT(res)) {
applog(IOCTRL_LOG, " %s reply %d of %d - none", name, i+1, rescount);
} else {
__bin2hex(buf, res->nonce, DATA_SIZ);
applog(IOCTRL_LOG, " %s reply %d of %d %d(%d) was task 0x%04x"
" chip %d core %d gold %s nonce 0x%s",
name, i+1, rescount, reply, rsiz,
RES_TASK(res),
(int)RES_CHIP(res),
(int)RES_CORE(res),
(int)RES_GOLD(res) ? "Y" : "N",
buf);
}
}
break;
case READ_ADDR(MINION_SYS_CHIP_SIG):
case READ_ADDR(MINION_SYS_CHIP_STA):
default:
applog(IOCTRL_LOG, "%s %s chip %d osiz %d%s%s",
name, dir, (int)obuf[0], (int)osiz, ex, buf);
__bin2hex(buf, rbuf + osiz - rsiz, rsiz);
applog(IOCTRL_LOG, " %s reply %d(%d) was %s", name, reply, rsiz, buf);
break;
}
}
}
}
*/
#define MINION_UNEXPECTED_TASK -999
#define MINION_OVERSIZE_TASK -998
// Set to 1 for debug
#define MINION_SHOW_IO 0
static int _do_ioctl(struct minion_info *minioninfo, uint8_t *obuf, uint32_t osiz, uint8_t *rbuf, uint32_t rsiz, MINION_FFL_ARGS)
{
/*
// TODO: remove these 2 later and rename the z[or]buf back to [or]buf
// this simply ensures the IO buffers displayed are not affected by a bug elsewhere - during dev/testing
uint8_t obuf[MINION_BUFSIZ], rbuf[MINION_BUFSIZ];
*/
struct spi_ioc_transfer tran;
int ret;
#if DO_IO_STATS
struct timeval sta, fin, lsta, lfin, tsd;
#endif
if ((int)osiz > MINION_BUFSIZ)
quitfrom(1, file, func, line, "%s() invalid osiz %u > %d", __func__, osiz, MINION_BUFSIZ);
if (rsiz >= osiz)
quitfrom(1, file, func, line, "%s() invalid rsiz %u >= osiz %u", __func__, rsiz, osiz);
// memcpy(obuf, zobuf, osiz);
memset(&obuf[0] + osiz - rsiz, 0xff, rsiz);
#if MINION_SHOW_IO
char *buf = bin2hex((char *)obuf, osiz);
applog(LOG_WARNING, "*** %s() sending %s", __func__, buf);
free(buf);
#endif
memset((char *)rbuf, 0x00, osiz);
// cgsleep_ms(5); // TODO: a delay ... based on the last command? But subtract elapsed
// i.e. do any commands need a delay after the I/O has completed before the next I/O?
memset(&tran, 0, sizeof(tran));
if (osiz < MINION_SPI_BUFSIZ)
tran.len = osiz;
else
return MINION_OVERSIZE_TASK;
tran.delay_usecs = 0;
tran.speed_hz = MINION_SPI_SPEED;
tran.tx_buf = (uintptr_t)obuf;
tran.rx_buf = (uintptr_t)rbuf;
IO_STAT_NOW(&lsta);
mutex_lock(&(minioninfo->spi_lock));
IO_STAT_NOW(&sta);
ret = ioctl(minioninfo->spifd, SPI_IOC_MESSAGE(1), (void *)&tran);
IO_STAT_NOW(&fin);
mutex_unlock(&(minioninfo->spi_lock));
IO_STAT_NOW(&lfin);
IO_STAT_NOW(&tsd);
IO_STAT_STORE(&sta, &fin, &lsta, &lfin, &tsd, obuf, osiz, ret, 1);
#if MINION_SHOW_IO
if (ret > 0) {
buf = bin2hex((char *)rbuf, ret);
applog(LOG_WARNING, "*** %s() reply %d = %s", __func__, ret, buf);
free(buf);
} else
applog(LOG_WARNING, "*** %s() reply = %d", __func__, ret);
#endif