-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathprune.go
402 lines (371 loc) · 12.1 KB
/
prune.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/**
* Filename: /Users/bao/code/allhic/prune.go
* Path: /Users/bao/code/allhic
* Created Date: Wednesday, February 28th 2018, 8:46:25 pm
* Author: bao
*
* Copyright (c) 2018 Haibao Tang
*/
package allhic
import (
"bufio"
"fmt"
"io"
"os"
"strings"
hungarianAlgorithm "github.com/oddg/hungarian-algorithm"
)
// Pruner processes the pruning step
type Pruner struct {
AllelesFile string
PairsFile string
edges []ContigPair
alleleGroups []AlleleGroup
}
// ContigAB is used to get a pair of contigs
type ContigAB [2]string
// AlleleGroup stores the contig names that are considered allelic
type AlleleGroup []string
// CtgAlleleGroupPair stores a pair of the contig and the alleleGroup it resides in
type CtgAlleleGroupPair struct {
ctg string
groupID int
}
// Run calls the pruning steps
// The pruning algorithm is a heuristic method that removes the following pairs:
//
// 1. Allelic, these are directly the pairs of allelic contigs given in the allele table
// 2. Cross-allelic, these are any contigs that connect to the allelic contigs so we only
// keep the best contig pair
//
// Pruned edges are then annotated as allelic/cross-allelic/ok
func (r *Pruner) Run() {
r.edges = parseDist(r.PairsFile)
r.alleleGroups = parseAllelesFile(r.AllelesFile)
r.pruneAllelic()
r.pruneCrossAllelicBipartiteMatching()
// r.pruneCrossAllelic()
newPairsFile := RemoveExt(r.PairsFile) + ".prune.txt"
writePairsFile(newPairsFile, r.edges)
}
// pruneAllelic removes the allelic contigs given in the allele table
// we iterate through all the allele groups and mark the pairs that are considered allelic
func (r *Pruner) pruneAllelic() {
// Find all blacklisted allelic pairs
allelicPairs := map[[2]string]bool{}
for _, alleleGroup := range r.alleleGroups {
for i := 0; i < len(alleleGroup); i++ {
for j := i + 1; j < len(alleleGroup); j++ {
a, b := alleleGroup[i], alleleGroup[j]
if a > b {
b, a = a, b
}
allelicPairs[[2]string{a, b}] = true
}
}
}
// Now iterate over all edges and mark
pruned, prunedLinks := 0, 0
total, totalLinks := 0, 0
for i, edge := range r.edges {
pair := [2]string{edge.at, edge.bt}
if _, ok := allelicPairs[pair]; ok {
r.edges[i].label = "allelic"
pruned++
prunedLinks += edge.nObservedLinks
}
total++
totalLinks += edge.nObservedLinks
}
log.Noticef("Allelic pairs imported: %d, pruned: %s, prunedLinks: %s",
len(allelicPairs), Percentage(pruned, total), Percentage(prunedLinks, totalLinks))
}
// pruneCrossAllelicBipartiteMatching is a heuristic that tests whether an edge
// is weak based on maximum weight bipartite matching. For example:
//
// a ===== 100 ===== b
//
// (a-d) 20 (b-c) 120
//
// c ===== 100 ===== d
// we still favor the partition where ab + cd = 200 > ad + bc = 140
func (r *Pruner) pruneCrossAllelicBipartiteMatching() {
ctgToAlleleGroup := r.getCtgToAlleleGroup()
// Store scores for contig pairs
ctgPairScores := map[ContigAB]int{}
for _, edge := range r.edges { // First pass collects all scores
if edge.label != "ok" { // We skip the allelic pairs since these are already removed
continue
}
ctgPairScores[ContigAB{edge.at, edge.bt}] = edge.nObservedLinks
ctgPairScores[ContigAB{edge.bt, edge.at}] = edge.nObservedLinks
}
// Now iterate over all edges and mark
pruned, prunedLinks := 0, 0
total, totalLinks := 0, 0
for i, edge := range r.edges {
if edge.label != "ok" {
continue
}
if !r.isStrongEdgeInBipartiteMatchingGroups(&edge, ctgToAlleleGroup, ctgPairScores) {
r.edges[i].label = edge.label
pruned++
prunedLinks += edge.nObservedLinks
}
total++
totalLinks += edge.nObservedLinks
}
log.Noticef("Cross-allelic pairs pruned: %s, prunedLinks: %s",
Percentage(pruned, total), Percentage(prunedLinks, totalLinks))
}
// isStrongEdgeInBipartiteMatching determines if the edge being considered is
// used in bipartite matching between two allele groups on either side of this
// edge, since a-b can both be within a number of AlleleGroups. We need to check
// each pair one by one.
func (r *Pruner) isStrongEdgeInBipartiteMatchingGroups(edge *ContigPair, ctgToAlleleGroup map[string][]int, ctgPairScores map[ContigAB]int) bool {
ag, aok := ctgToAlleleGroup[edge.at]
bg, bok := ctgToAlleleGroup[edge.bt]
if !aok || !bok {
return true
}
for _, ai := range ag {
for _, bi := range bg {
aGroup := r.alleleGroups[ai]
bGroup := r.alleleGroups[bi]
if !r.isStrongEdgeInBipartiteMatching(edge, aGroup, bGroup, ctgPairScores) {
edge.label = fmt.Sprintf("cross-allelic(%s|%s)", strings.Join(aGroup, ","), strings.Join(bGroup, ","))
return false
}
}
}
return true
}
// isStrongEdgeInBipartiteMatching determines if the edge being considered is
// used in bipartite matching between two allele groups on either side of this
// edge. Note that this function is called by
// isStrongEdgeInBipartiteMatchingGroups(), and only operates on a single pair
// of AlleleGroups.
func (r *Pruner) isStrongEdgeInBipartiteMatching(edge *ContigPair, aGroup AlleleGroup, bGroup AlleleGroup, ctgPairScores map[ContigAB]int) bool {
// Build a square matrix that contain matching scores
aN := len(aGroup)
bN := len(bGroup)
N := max(aN, bN)
S := Make2DSlice(N, N)
ti, tj := -1, -1
// Populate the entries
for i, at := range aGroup {
if at == edge.at {
ti = i
}
for j, bt := range bGroup {
if bt == edge.bt {
tj = j
}
ctgPair := ContigAB{at, bt}
if score, ok := ctgPairScores[ctgPair]; ok {
S[i][j] = score
}
}
}
// Solve the matching problem using Hungarian algorithm
solution := maxBipartiteMatchingWithWeights(S)
ans := solution[ti] == tj
// fmt.Println(edge.at, edge.bt, aGroup, bGroup, S, solution, ans)
return ans
}
// maxBipartiteMatchingWithWeights calculates the bipartite matching using the
// weights, wraps hungarianAlgorithm() which minimizes the costs, so we need to
// transform from weights to costs
func maxBipartiteMatchingWithWeights(weights [][]int) []int {
maxCell := 0
// Get the max value of the matrix
for _, row := range weights {
for _, cell := range row {
maxCell = max(maxCell, cell)
}
}
N := len(weights)
costs := Make2DSlice(N, N)
// Subtract the weights from the max to get costs
for i, row := range weights {
for j, cell := range row {
costs[i][j] = maxCell - cell
}
}
// By default, hungarianAlgorithm works on costs
solution, _ := hungarianAlgorithm.Solve(costs)
return solution
}
// getCtgToAlleleGroup returns contig to List of alleleGroups
func (r *Pruner) getCtgToAlleleGroup() map[string][]int {
// Store contig to list of alleleGroups since each contig can be in different alleleGroups
ctgToAlleleGroup := map[string][]int{}
for groupID, alleleGroup := range r.alleleGroups {
for _, ctg := range alleleGroup {
if gg, ok := ctgToAlleleGroup[ctg]; ok {
gg = append(gg, groupID)
} else {
ctgToAlleleGroup[ctg] = []int{groupID}
}
}
}
return ctgToAlleleGroup
}
// pruneCrossAllelic removes contigs that link to multiple allelic contigs and we choose
// to keep a single best link, i.e. for each allele group, we find the best link to each
// contig and retain. Note that since contigs may be in different allele groups, the order
// of removal may affect end results.
func (r *Pruner) pruneCrossAllelic() {
ctgToAlleleGroup := r.getCtgToAlleleGroup()
// Store the best match of each contig to an allele group
scores := map[CtgAlleleGroupPair]int{} // (ctg, alleleGroupID) => score
for _, edge := range r.edges {
if edge.label != "ok" { // We skip the allelic pairs since these are already removed
continue
}
updateScore(edge.at, edge.bt, edge.nObservedLinks, ctgToAlleleGroup, scores)
updateScore(edge.bt, edge.at, edge.nObservedLinks, ctgToAlleleGroup, scores)
}
// Now iterate over all edges and mark
pruned, prunedLinks := 0, 0
total, totalLinks := 0, 0
for i, edge := range r.edges {
aBestScore := getScore(edge.at, edge.bt, ctgToAlleleGroup, scores)
bBestScore := getScore(edge.bt, edge.at, ctgToAlleleGroup, scores)
if edge.nObservedLinks < aBestScore && edge.nObservedLinks < bBestScore {
r.edges[i].label = fmt.Sprintf("cross-allelic(%d|%d)", aBestScore, bBestScore)
pruned++
prunedLinks += edge.nObservedLinks
}
total++
totalLinks += edge.nObservedLinks
}
log.Noticef("Cross-allelic pairs pruned: %s, prunedLinks: %s",
Percentage(pruned, total), Percentage(prunedLinks, totalLinks))
}
// updateScore takes a potential pair of contigs and update scores
func updateScore(at, bt string, score int, ctgToAlleleGroup map[string][]int, scores map[CtgAlleleGroupPair]int) {
if gg, ok := ctgToAlleleGroup[bt]; ok {
// Update through all alleleGroups that contig b sits in
for _, bg := range gg {
pair := CtgAlleleGroupPair{at, bg}
// TODO: the score should ideally be 'normalized' score, since contig size can affect size, and as a
// result, the "best match" in absolute score may be wrong
if sc, ok := scores[pair]; ok {
if sc < score {
scores[pair] = score
}
} else {
scores[pair] = score
}
}
}
}
// getScore takes a pair of contigs and get the maximum score to the allele group
func getScore(at, bt string, ctgToAlleleGroup map[string][]int, scores map[CtgAlleleGroupPair]int) int {
if gg, ok := ctgToAlleleGroup[bt]; ok {
maxScore := -1
for _, bg := range gg {
maxScoreAlleleGroup, _ := scores[CtgAlleleGroupPair{at, bg}]
if maxScore < maxScoreAlleleGroup {
maxScore = maxScoreAlleleGroup
}
}
return maxScore // maximum score among all allele group matching
}
return -1
}
// parseAllelesFile() routes parser to either parseAssociationLog() or
// parseAllelesTable(), based on the first row of the file
func parseAllelesFile(filename string) []AlleleGroup {
fh := mustOpen(filename)
reader := bufio.NewReader(fh)
row, err := reader.ReadString('\n')
if err != nil {
log.Fatal(err)
}
_ = fh.Close()
if strings.Contains(row, "->") {
return parseAssociationLog(filename)
}
return parseAllelesTable(filename)
}
// parseAssociationLog imports contig allelic relationship from purge-haplotigs
// File has the following format:
// tig00030660,PRIMARY -> tig00003333,HAPLOTIG
// -> tig00038686,HAPLOTIG
func parseAssociationLog(associationFile string) []AlleleGroup {
log.Noticef("Parse association log `%s`", associationFile)
fh := mustOpen(associationFile)
reader := bufio.NewReader(fh)
var data []AlleleGroup
var primary string
var haplotig string
for {
row, err := reader.ReadString('\n')
row = strings.TrimSpace(row)
if err == io.EOF {
break
}
if row == "" {
continue
}
if err != nil {
log.Fatal(err)
}
words := strings.Split(row, " ")
if len(words) == 3 {
primary = strings.Split(words[0], ",")[0]
haplotig = strings.Split(words[2], ",")[0]
} else if len(words) == 2 {
haplotig = strings.Split(words[1], ",")[0]
} else {
log.Fatalf("Malformed line: %s, expecting 2 or 3 words", row)
}
alleleGroup := AlleleGroup{primary, haplotig}
data = append(data, alleleGroup)
}
_ = fh.Close()
return data
}
// parseAllelesTable imports the contig allelic relationship
// File is a tab-separated file that looks like the following:
// Chr10 18902 tig00030660 tig00003333
// Chr10 35071 tig00038687 tig00038686 tig00065419
func parseAllelesTable(allelesFile string) []AlleleGroup {
log.Noticef("Parse alleles table `%s`", allelesFile)
fh := mustOpen(allelesFile)
reader := bufio.NewReader(fh)
var data []AlleleGroup
for {
row, err := reader.ReadString('\n')
row = strings.TrimSpace(row)
if row == "" && err == io.EOF {
break
}
if err != nil {
log.Fatal(err)
}
words := strings.Split(row, "\t")
if len(words) <= 3 { // Must have at least 4 fields, i.e. 1 pair
continue
}
alleleGroup := make(AlleleGroup, len(words)-2)
copy(alleleGroup, words[2:])
data = append(data, alleleGroup)
}
_ = fh.Close()
return data
}
// writePairsFile simply writes pruned contig pairs to file
func writePairsFile(pairsFile string, edges []ContigPair) {
f, _ := os.Create(pairsFile)
w := bufio.NewWriter(f)
_, _ = fmt.Fprintf(w, PairsFileHeader)
for _, c := range edges {
_, _ = fmt.Fprintln(w, c)
}
_ = w.Flush()
log.Noticef("Pruned contig pair analyses written to `%s`", pairsFile)
_ = f.Close()
}