-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcam.py
201 lines (163 loc) · 7.04 KB
/
cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Ke Sun ([email protected])
# ------------------------------------------------------------------------------
import os
import pprint
import sys
import _init_paths
from lib.core.Counter import Counter
from lib.utils.utils import create_logger, random_seed_setting
from lib.utils.modelsummary import get_model_summary
from lib.core.cc_function import testval, test
import datasets
import lib_cls.models as models
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch
import numpy as np
import timeit
import time
import logging
import argparse
from lib.models.build_counter import Baseline_Counter
from mmcv import Config, DictAction
from torchcam.methods import SmoothGradCAMp
# config.merge_from_file(sys.argv[2])
# os.environ["CUDA_VISIBLE_DEVICES"] = \
# ','.join((map(str, config.GPUS))) # str(config.GPUS).strip('(').strip(')')
def parse_args():
parser = argparse.ArgumentParser(description='Test crowd counting network')
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
config = Config.fromfile(args.cfg)
logger, final_output_dir = create_logger(
config, args.cfg, 'test')
logger.info(pprint.pformat(args))
logger.info(pprint.pformat(config))
# cudnn related setting
random_seed_setting(config)
# build model
device = torch.device('cuda:{}'.format(args.local_rank))
model = Baseline_Counter(config.network,config.dataset.den_factor,config.train.route_size,device)
# dump_input = torch.rand(
# (1, 3, config.TRAIN.IMAGE_SIZE[1], config.TRAIN.IMAGE_SIZE[0])
# )
# logger.info(get_model_summary(model.cuda(), dump_input.cuda()))
if config.test.model_file:
model_state_file = config.test.model_file
else:
model_state_file = os.path.join(final_output_dir,
'final_state.pth')
logger.info('=> loading model from {}'.format(model_state_file))
pretrained_dict = torch.load(model_state_file)
model_dict = model.state_dict()
# pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items()
# if k[6:] in model_dict.keys()}
# for k, _ in pretrained_dict.items():
# logger.info(
# '=> loading {} from pretrained model'.format(k))
# model_dict.update(pretrained_dict)
model.load_state_dict(pretrained_dict)
model = model.to(device)
# prepare data
test_dataset = eval('datasets.' + config.dataset.name)(
root=config.dataset.root,
list_path=config.dataset.test_set,
num_samples=None,
multi_scale=False,
flip=False,
base_size=config.test.loc_base_size,
downsample_rate=1)
testloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=1,
shuffle=False,
num_workers=0, # config.WORKERS,
pin_memory=True)
def read_box_gt(box_gt_file):
gt_data = {}
with open(box_gt_file) as f:
for line in f.readlines():
line = line.strip().split(' ')
line_data = [int(i) for i in line]
idx, num = [line_data[0], line_data[1]]
points_r = []
if num > 0:
points_r = np.array(line_data[2:]).reshape(((len(line) - 2) // 5, 5))
gt_data[idx] = {'num': num, 'points': points_r[:, 0:2], 'sigma': points_r[:, 2:4], 'level': points_r[:, 4]}
else:
gt_data[idx] = {'num': 0, 'points': [], 'sigma': [], 'level': []}
return gt_data
loc_gt = read_box_gt(os.path.join(config.dataset.root, config.dataset.loc_gt))
start = timeit.default_timer()
model.eval()
device = torch.cuda.current_device()
cam_extractor = SmoothGradCAMpp(model)
import pdb
pdb.set_trace()
with torch.no_grad():
for index, batch in enumerate(tqdm(testloader)):
image, label, _, name = batch
image, label, _, name = batch
image = image.to(device)
for i in range(len(label)):
label[i] = label[i].to(device)
# pad_dims = (0, pad_w, 0, pad_h)
# image = F.pad(image, pad_dims, "constant")
# label = F.pad(label, pad_dims, "constant")
result = model(image, label, 'val')
losses=result['losses']
pre_den=result['pre_den_x1']
gt_den = result['gt_den_x1']
# losses, pred, labels = patch_forward(model, image, label,
# config.TEST.PATCH_BATCH_SIZE, mode='val')
# import pdb
# pdb.set_trace()
# -----------Counting performance------------------
gt_count, pred_cnt = label[0].sum().item(), pre_data['num'] #pred.sum().item()
msg = '{} {}' .format(gt_count,pred_cnt)
logger.info(msg)
# print(name,':', gt_count, pred_cnt)
s_mae = abs(gt_count - pred_cnt)
s_mse = ((gt_count - pred_cnt) * (gt_count - pred_cnt))
image = image[0]
for t, m, s in zip(image, mean, std):
t.mul_(s).add_(m)
save_results_more(name, sv_dir, image.cpu().data, \
pre_den[0].detach().cpu(), gt_den[0].detach().cpu(),pred_cnt,gt_count,
pre_data['points'])
msg = 'mae: {: 4.4f}, mse: {: 4.4f}, \
nae: {: 4.4f}, Class IoU: '.format(mae,
mse, nae)
logging.info(msg)
# logging.info(IoU_array)
end = timeit.default_timer()
logger.info('Mins: %d' % np.int((end - start) / 60))
logger.info('Done')
if __name__ == '__main__':
main()