-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolution_3_1.py
227 lines (191 loc) · 5.72 KB
/
solution_3_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 10 13:29:04 2018
@author: tdenton
"""
from fractions import Fraction, gcd
#markov chain
def transpose(matrix):
height = len(matrix)
if len(matrix) == 0:
return(matrix)
width = len(matrix[0])
new_matrix = []
for y in range(0, width):
new_row = []
for x in range(0,height):
new_row.append(matrix[x][y])
new_matrix.append(new_row)
return new_matrix
#multiply oddly
def multiply_matrix(matr_a, matr_b):
inv_b = transpose(matr_b)
final_array = []
for y in inv_b:
temp_row = []
for x in matr_a:
total = 0
for index, x_x in enumerate(x):
total += y[index]*x_x
temp_row.append(total)
final_array.append(temp_row)
final_array = transpose(final_array)
return(final_array[0])
#Not original work
def invert(matrix):
n = len(matrix)
inverse = [[Fraction(0) for col in range(n)] for row in range(n)]
for i in range(n):
inverse[i][i] = Fraction(1)
for i in range(n):
for j in range(n):
if i != j:
if matrix[i][i] == 0:
return False
ratio = matrix[j][i] / matrix[i][i]
for k in range(n):
inverse[j][k] = inverse[j][k] - ratio * inverse[i][k]
matrix[j][k] = matrix[j][k] - ratio * matrix[i][k]
for i in range(n):
a = matrix[i][i]
if a == 0:
return False
for j in range(n):
inverse[i][j] = inverse[i][j] / a
return inverse
#####################
def subtractBase(matr_a, matr_b):
new_matrix = []
# Turn Matrix into fractions
for x, row in enumerate(matr_a):
for y, value in enumerate(row):
matr_a[x][y] = Fraction(value, 1)
for x, row in enumerate(matr_a):
new_row = []
for y, value in enumerate(row):
new_row.append(value - matr_b[x][y])
new_matrix.append(new_row)
return(new_matrix)
def format_matrix(array_list, matrix):
counter = []
for x in range(0,len(jim)):
counter.append(x)
for x in array_list:
counter.remove(x)
x_range = array_list + counter
fin_matrix = []
for x in x_range:
temp_array = []
for y in x_range:
temp_array.append(matrix[x][y])
fin_matrix.append(temp_array)
return x_range, fin_matrix
def find_fr(num, matrix):
size_fr = len(matrix) - num
tempfr = matrix[-size_fr:]
fr = []
for row in tempfr:
fr.append(row[:num])
return fr
def find_i(num, matrix):
size_i = len(matrix) - num
i = []
for x in range(0,size_i):
tempArry = [0] * size_i
tempArry[x] = 1
i.append(tempArry)
return i
def find_q(num, matrix):
size_q = len(matrix) - num
tempq = matrix[-size_q:]
q = []
for row in tempq:
q.append(row[-size_q:])
return q
def find_z(num, matrix):
size_z = len(matrix) - num
tempz = matrix[:num]
z = []
for row in tempz:
z.append(row[-size_z:])
return z
def _lcm(array):
frac_array = []
for value in array:
frac_array.append([value.numerator, value.denominator])
num_den = transpose(frac_array)
dens = sorted(list(set(num_den[1])))
for item in dens:
if item == 1:
dens.remove(1)
#not original but modified
lcm = dens[0]
for i in dens[1:]:
lcm = lcm*i/gcd(lcm, i)
############################
return_array = []
for value in frac_array:
return_array.append(value[0]* (lcm/value[1]))
return_array.append(lcm)
return(return_array)
def answer(state_array):
global jim
jim = state_array
# Find terminal
final = []
un_final = []
if len(state_array) == 1:
return([1,1])
for index, x in enumerate(jim):
f_final = False
if all(y == 0 for y in x):
final.append(index)
f_final = True
#this finds final states that are hidden by 1
if f_final == False:
if sum(x) == x[index]:
final.append(index)
for entry in final:
found = False
for row in jim:
for index, x in enumerate(row):
if x != 0 and x != sum(jim[index]):
if index == entry:
found = True
if found == False:
un_final.append(entry)
# set initial ending
final_lst = [None] * (len(final) + 1)
if len(un_final) > 0:
for index, entry in enumerate(final):
if entry in un_final:
#print(entry, index)
final_lst[index] = 0
#fill in values with 1s
for value in final:
jim[value][value] = 1
#transform matrix into standard form
x_range, matrix = format_matrix(final, jim)
i = find_i(len(final), matrix)
z = find_z(len(final), matrix)
fr = find_fr(len(final), matrix)
q = find_q(len(final), matrix)
denominators = []
for row in matrix:
denominators.append(sum(row))
denominators = denominators[-len(fr):]
# Add denominators to q
for index, den in enumerate(denominators):
for y, x in enumerate(q[index]):
q[index][y] = Fraction(x,den)
# Add denominators to FR
for index, den in enumerate(denominators):
for y, x in enumerate(fr[index]):
fr[index][y] = Fraction(x,den)
#Subract Matricies
I_Q = subtractBase(i, q)
F = invert(I_Q)
finArray = multiply_matrix(F, fr)
fin = _lcm(finArray)
return(fin)