diff --git a/tutorial.ipynb b/tutorial.ipynb
index 19761bc7bff5..1f537c516ede 100644
--- a/tutorial.ipynb
+++ b/tutorial.ipynb
@@ -6,6 +6,7 @@
"name": "YOLOv5 Tutorial",
"provenance": [],
"collapsed_sections": [],
+ "machine_shape": "hm",
"include_colab_link": true
},
"kernelspec": {
@@ -15,346 +16,346 @@
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
- "eb95db7cae194218b3fcefb439b6352f": {
+ "d90eeb56398f458086e3b2b41dbd9fec": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
- "_view_name": "HBoxView",
"_dom_classes": [],
- "_model_name": "HBoxModel",
- "_view_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
"box_style": "",
- "layout": "IPY_MODEL_769ecde6f2e64bacb596ce972f8d3d2d",
- "_model_module": "@jupyter-widgets/controls",
"children": [
- "IPY_MODEL_384a001876054c93b0af45cd1e960bfe",
- "IPY_MODEL_dded0aeae74440f7ba2ffa0beb8dd612",
- "IPY_MODEL_5296d28be75740b2892ae421bbec3657"
- ]
+ "IPY_MODEL_d91d8347f17349a4987cea29eac0a49c",
+ "IPY_MODEL_8f4ffda703ac4348ab7edf1d12a188e1",
+ "IPY_MODEL_8c2d91f564de45f8a403386eeeccac27"
+ ],
+ "layout": "IPY_MODEL_5dd95d3eda8b49f7910620edcdcbdcdc"
}
},
- "769ecde6f2e64bacb596ce972f8d3d2d": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_view_name": "LayoutView",
- "grid_template_rows": null,
- "right": null,
- "justify_content": null,
- "_view_module": "@jupyter-widgets/base",
- "overflow": null,
- "_model_module_version": "1.2.0",
- "_view_count": null,
- "flex_flow": null,
- "width": null,
- "min_width": null,
- "border": null,
- "align_items": null,
- "bottom": null,
- "_model_module": "@jupyter-widgets/base",
- "top": null,
- "grid_column": null,
- "overflow_y": null,
- "overflow_x": null,
- "grid_auto_flow": null,
- "grid_area": null,
- "grid_template_columns": null,
- "flex": null,
- "_model_name": "LayoutModel",
- "justify_items": null,
- "grid_row": null,
- "max_height": null,
- "align_content": null,
- "visibility": null,
- "align_self": null,
- "height": null,
- "min_height": null,
- "padding": null,
- "grid_auto_rows": null,
- "grid_gap": null,
- "max_width": null,
- "order": null,
- "_view_module_version": "1.2.0",
- "grid_template_areas": null,
- "object_position": null,
- "object_fit": null,
- "grid_auto_columns": null,
- "margin": null,
- "display": null,
- "left": null
- }
- },
- "384a001876054c93b0af45cd1e960bfe": {
+ "d91d8347f17349a4987cea29eac0a49c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
- "_view_name": "HTMLView",
- "style": "IPY_MODEL_9f09facb2a6c4a7096810d327c8b551c",
"_dom_classes": [],
- "description": "",
- "_model_name": "HTMLModel",
- "placeholder": "",
- "_view_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "value": "100%",
+ "_model_name": "HTMLModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
"description_tooltip": null,
- "_model_module": "@jupyter-widgets/controls",
- "layout": "IPY_MODEL_25621cff5d16448cb7260e839fd0f543"
+ "layout": "IPY_MODEL_520e5b7e80eb450188261cffbc574d25",
+ "placeholder": "",
+ "style": "IPY_MODEL_3cef138c5f7743858bb0f87b65dd3c76",
+ "value": "100%"
}
},
- "dded0aeae74440f7ba2ffa0beb8dd612": {
+ "8f4ffda703ac4348ab7edf1d12a188e1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
- "_view_name": "ProgressView",
- "style": "IPY_MODEL_0ce7164fc0c74bb9a2b5c7037375a727",
"_dom_classes": [],
- "description": "",
- "_model_name": "FloatProgressModel",
- "bar_style": "success",
- "max": 818322941,
- "_view_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "value": 818322941,
+ "_model_name": "FloatProgressModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "orientation": "horizontal",
- "min": 0,
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
"description_tooltip": null,
- "_model_module": "@jupyter-widgets/controls",
- "layout": "IPY_MODEL_c4c4593c10904cb5b8a5724d60c7e181"
+ "layout": "IPY_MODEL_c3782c6dda80400ba7f8c5345624bf87",
+ "max": 818322941,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_11415bab172a4904b73e29ff60f6fce1",
+ "value": 818322941
}
},
- "5296d28be75740b2892ae421bbec3657": {
+ "8c2d91f564de45f8a403386eeeccac27": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
- "_view_name": "HTMLView",
- "style": "IPY_MODEL_473371611126476c88d5d42ec7031ed6",
"_dom_classes": [],
- "description": "",
- "_model_name": "HTMLModel",
- "placeholder": "",
- "_view_module": "@jupyter-widgets/controls",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "value": " 780M/780M [00:11<00:00, 91.9MB/s]",
+ "_model_name": "HTMLModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
"description_tooltip": null,
- "_model_module": "@jupyter-widgets/controls",
- "layout": "IPY_MODEL_65efdfd0d26c46e79c8c5ff3b77126cc"
+ "layout": "IPY_MODEL_eac18040908042dbae67a47d23e95b47",
+ "placeholder": "",
+ "style": "IPY_MODEL_e0fc1d6eb478469c9098aa9518d7b358",
+ "value": " 780M/780M [01:17<00:00, 17.7MB/s]"
}
},
- "9f09facb2a6c4a7096810d327c8b551c": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
+ "5dd95d3eda8b49f7910620edcdcbdcdc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
"state": {
- "_view_name": "StyleView",
- "_model_name": "DescriptionStyleModel",
- "description_width": "",
- "_view_module": "@jupyter-widgets/base",
- "_model_module_version": "1.5.0",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_model_module": "@jupyter-widgets/controls"
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "25621cff5d16448cb7260e839fd0f543": {
+ "520e5b7e80eb450188261cffbc574d25": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
- "_view_name": "LayoutView",
- "grid_template_rows": null,
- "right": null,
- "justify_content": null,
- "_view_module": "@jupyter-widgets/base",
- "overflow": null,
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "flex_flow": null,
- "width": null,
- "min_width": null,
- "border": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
"align_items": null,
+ "align_self": null,
+ "border": null,
"bottom": null,
- "_model_module": "@jupyter-widgets/base",
- "top": null,
- "grid_column": null,
- "overflow_y": null,
- "overflow_x": null,
- "grid_auto_flow": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
"grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
"grid_template_columns": null,
- "flex": null,
- "_model_name": "LayoutModel",
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
"justify_items": null,
- "grid_row": null,
+ "left": null,
+ "margin": null,
"max_height": null,
- "align_content": null,
- "visibility": null,
- "align_self": null,
- "height": null,
- "min_height": null,
- "padding": null,
- "grid_auto_rows": null,
- "grid_gap": null,
"max_width": null,
- "order": null,
- "_view_module_version": "1.2.0",
- "grid_template_areas": null,
- "object_position": null,
+ "min_height": null,
+ "min_width": null,
"object_fit": null,
- "grid_auto_columns": null,
- "margin": null,
- "display": null,
- "left": null
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "0ce7164fc0c74bb9a2b5c7037375a727": {
+ "3cef138c5f7743858bb0f87b65dd3c76": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
- "_view_name": "StyleView",
- "_model_name": "ProgressStyleModel",
- "description_width": "",
- "_view_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "bar_color": null,
- "_model_module": "@jupyter-widgets/controls"
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "c4c4593c10904cb5b8a5724d60c7e181": {
+ "c3782c6dda80400ba7f8c5345624bf87": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
- "_view_name": "LayoutView",
- "grid_template_rows": null,
- "right": null,
- "justify_content": null,
- "_view_module": "@jupyter-widgets/base",
- "overflow": null,
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "flex_flow": null,
- "width": null,
- "min_width": null,
- "border": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
"align_items": null,
+ "align_self": null,
+ "border": null,
"bottom": null,
- "_model_module": "@jupyter-widgets/base",
- "top": null,
- "grid_column": null,
- "overflow_y": null,
- "overflow_x": null,
- "grid_auto_flow": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
"grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
"grid_template_columns": null,
- "flex": null,
- "_model_name": "LayoutModel",
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
"justify_items": null,
- "grid_row": null,
+ "left": null,
+ "margin": null,
"max_height": null,
- "align_content": null,
- "visibility": null,
- "align_self": null,
- "height": null,
- "min_height": null,
- "padding": null,
- "grid_auto_rows": null,
- "grid_gap": null,
"max_width": null,
- "order": null,
- "_view_module_version": "1.2.0",
- "grid_template_areas": null,
- "object_position": null,
+ "min_height": null,
+ "min_width": null,
"object_fit": null,
- "grid_auto_columns": null,
- "margin": null,
- "display": null,
- "left": null
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "473371611126476c88d5d42ec7031ed6": {
+ "11415bab172a4904b73e29ff60f6fce1": {
"model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
- "_view_name": "StyleView",
- "_model_name": "DescriptionStyleModel",
- "description_width": "",
- "_view_module": "@jupyter-widgets/base",
+ "_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_model_module": "@jupyter-widgets/controls"
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "65efdfd0d26c46e79c8c5ff3b77126cc": {
+ "eac18040908042dbae67a47d23e95b47": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
- "_view_name": "LayoutView",
- "grid_template_rows": null,
- "right": null,
- "justify_content": null,
- "_view_module": "@jupyter-widgets/base",
- "overflow": null,
+ "_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "flex_flow": null,
- "width": null,
- "min_width": null,
- "border": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
"align_items": null,
+ "align_self": null,
+ "border": null,
"bottom": null,
- "_model_module": "@jupyter-widgets/base",
- "top": null,
- "grid_column": null,
- "overflow_y": null,
- "overflow_x": null,
- "grid_auto_flow": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
"grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
"grid_template_columns": null,
- "flex": null,
- "_model_name": "LayoutModel",
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
"justify_items": null,
- "grid_row": null,
+ "left": null,
+ "margin": null,
"max_height": null,
- "align_content": null,
- "visibility": null,
- "align_self": null,
- "height": null,
- "min_height": null,
- "padding": null,
- "grid_auto_rows": null,
- "grid_gap": null,
"max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
"order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e0fc1d6eb478469c9098aa9518d7b358": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "grid_template_areas": null,
- "object_position": null,
- "object_fit": null,
- "grid_auto_columns": null,
- "margin": null,
- "display": null,
- "left": null
+ "_view_name": "StyleView",
+ "description_width": ""
}
}
}
@@ -368,7 +369,7 @@
"colab_type": "text"
},
"source": [
- "
"
+ "
"
]
},
{
@@ -402,7 +403,7 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "3809e5a9-dd41-4577-fe62-5531abf7cca2"
+ "outputId": "ebf225bd-e109-4dbd-8561-3b15514ca47c"
},
"source": [
"!git clone https://github.com/ultralytics/yolov5 # clone\n",
@@ -413,14 +414,20 @@
"import utils\n",
"display = utils.notebook_init() # checks"
],
- "execution_count": null,
+ "execution_count": 1,
"outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n"
+ ]
+ },
{
"output_type": "stream",
"name": "stdout",
"text": [
- "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
- "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 42.2/166.8 GB disk)\n"
+ "Setup complete ✅ (8 CPUs, 51.0 GB RAM, 38.2/166.8 GB disk)\n"
]
}
]
@@ -453,26 +460,29 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "8f7e6588-215d-4ebd-93af-88b871e770a7"
+ "outputId": "2f43338d-f533-4277-ef9f-b37b565e2702"
},
"source": [
"!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
"display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
],
- "execution_count": null,
+ "execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
- "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
- "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+ "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
+ "YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+ "\n",
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...\n",
+ "100% 14.1M/14.1M [00:00<00:00, 220MB/s]\n",
"\n",
"Fusing layers... \n",
- "Model Summary: 213 layers, 7225885 parameters, 0 gradients\n",
- "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.007s)\n",
- "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.007s)\n",
- "Speed: 0.5ms pre-process, 6.9ms inference, 1.3ms NMS per image at shape (1, 3, 640, 640)\n",
+ "YOLOv5s summary: 213 layers, 7225885 parameters, 0 gradients\n",
+ "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.012s)\n",
+ "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.013s)\n",
+ "Speed: 0.5ms pre-process, 12.5ms inference, 17.3ms NMS per image at shape (1, 3, 640, 640)\n",
"Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
]
}
@@ -514,41 +524,41 @@
"id": "WQPtK1QYVaD_",
"colab": {
"base_uri": "https://localhost:8080/",
- "height": 48,
+ "height": 49,
"referenced_widgets": [
- "eb95db7cae194218b3fcefb439b6352f",
- "769ecde6f2e64bacb596ce972f8d3d2d",
- "384a001876054c93b0af45cd1e960bfe",
- "dded0aeae74440f7ba2ffa0beb8dd612",
- "5296d28be75740b2892ae421bbec3657",
- "9f09facb2a6c4a7096810d327c8b551c",
- "25621cff5d16448cb7260e839fd0f543",
- "0ce7164fc0c74bb9a2b5c7037375a727",
- "c4c4593c10904cb5b8a5724d60c7e181",
- "473371611126476c88d5d42ec7031ed6",
- "65efdfd0d26c46e79c8c5ff3b77126cc"
+ "d90eeb56398f458086e3b2b41dbd9fec",
+ "d91d8347f17349a4987cea29eac0a49c",
+ "8f4ffda703ac4348ab7edf1d12a188e1",
+ "8c2d91f564de45f8a403386eeeccac27",
+ "5dd95d3eda8b49f7910620edcdcbdcdc",
+ "520e5b7e80eb450188261cffbc574d25",
+ "3cef138c5f7743858bb0f87b65dd3c76",
+ "c3782c6dda80400ba7f8c5345624bf87",
+ "11415bab172a4904b73e29ff60f6fce1",
+ "eac18040908042dbae67a47d23e95b47",
+ "e0fc1d6eb478469c9098aa9518d7b358"
]
},
- "outputId": "bcf9a448-1f9b-4a41-ad49-12f181faf05a"
+ "outputId": "26f3c005-cc13-4b7c-8523-844b56a0b0e3"
},
"source": [
"# Download COCO val\n",
"torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
"!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
],
- "execution_count": null,
+ "execution_count": 3,
"outputs": [
{
"output_type": "display_data",
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "eb95db7cae194218b3fcefb439b6352f",
- "version_minor": 0,
- "version_major": 2
- },
"text/plain": [
" 0%| | 0.00/780M [00:00, ?B/s]"
- ]
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "d90eeb56398f458086e3b2b41dbd9fec"
+ }
},
"metadata": {}
}
@@ -561,58 +571,60 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "74f1dfa9-6b6d-4b36-f67e-bbae243869f9"
+ "outputId": "c73097d6-02a8-43af-9962-ba6500b793ff"
},
"source": [
"# Run YOLOv5x on COCO val\n",
"!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
],
- "execution_count": null,
+ "execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
- "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
- "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+ "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False\n",
+ "YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
- "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt to yolov5x.pt...\n",
- "100% 166M/166M [00:03<00:00, 54.1MB/s]\n",
+ "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5x.pt to yolov5x.pt...\n",
+ "100% 166M/166M [00:05<00:00, 33.5MB/s]\n",
"\n",
"Fusing layers... \n",
- "Model Summary: 444 layers, 86705005 parameters, 0 gradients\n",
- "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2636.64it/s]\n",
- "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
- " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.17it/s]\n",
- " all 5000 36335 0.729 0.63 0.683 0.496\n",
- "Speed: 0.1ms pre-process, 4.9ms inference, 1.9ms NMS per image at shape (32, 3, 640, 640)\n",
+ "YOLOv5x summary: 444 layers, 86705005 parameters, 0 gradients\n",
+ "Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...\n",
+ "100% 755k/755k [00:00<00:00, 49.6MB/s]\n",
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<00:00, 10667.19it/s]\n",
+ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/datasets/coco/val2017.cache\n",
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [00:58<00:00, 2.70it/s]\n",
+ " all 5000 36335 0.743 0.626 0.683 0.496\n",
+ "Speed: 0.1ms pre-process, 4.8ms inference, 1.2ms NMS per image at shape (32, 3, 640, 640)\n",
"\n",
"Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
"loading annotations into memory...\n",
- "Done (t=0.46s)\n",
+ "Done (t=0.38s)\n",
"creating index...\n",
"index created!\n",
"Loading and preparing results...\n",
- "DONE (t=5.15s)\n",
+ "DONE (t=5.42s)\n",
"creating index...\n",
"index created!\n",
"Running per image evaluation...\n",
"Evaluate annotation type *bbox*\n",
- "DONE (t=90.39s).\n",
+ "DONE (t=72.67s).\n",
"Accumulating evaluation results...\n",
- "DONE (t=14.54s).\n",
- " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507\n",
- " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689\n",
- " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552\n",
- " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345\n",
- " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559\n",
- " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652\n",
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381\n",
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630\n",
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682\n",
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526\n",
- " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.732\n",
- " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829\n",
+ "DONE (t=13.48s).\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.506\n",
+ " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.688\n",
+ " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.549\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.340\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.557\n",
+ " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.651\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.382\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.631\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.684\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.528\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.737\n",
+ " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833\n",
"Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
]
}
@@ -719,26 +731,31 @@
"colab": {
"base_uri": "https://localhost:8080/"
},
- "outputId": "8724d13d-6711-4a12-d96a-1c655e5c3549"
+ "outputId": "6735ae8b-fd75-4ecd-9d32-71d1881e2481"
},
"source": [
"# Train YOLOv5s on COCO128 for 3 epochs\n",
"!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
],
- "execution_count": null,
+ "execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
- "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
+ "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
"\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
- "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+ "YOLOv5 🚀 v6.1-174-gc4cb7c6 torch 1.11.0+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
- "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
+ "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
"\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"\n",
+ "Dataset not found ⚠, missing paths ['/content/datasets/coco128/images/train2017']\n",
+ "Downloading https://ultralytics.com/assets/coco128.zip to coco128.zip...\n",
+ "100% 6.66M/6.66M [00:00<00:00, 41.0MB/s]\n",
+ "Dataset download success ✅ (0.9s), saved to \u001b[1m/content/datasets\u001b[0m\n",
+ "\n",
" from n params module arguments \n",
" 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n",
" 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n",
@@ -765,38 +782,39 @@
" 22 [-1, 10] 1 0 models.common.Concat [1] \n",
" 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n",
" 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
- "Model Summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n",
+ "Model summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n",
"\n",
"Transferred 349/349 items from yolov5s.pt\n",
"Scaled weight_decay = 0.0005\n",
- "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias\n",
+ "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias\n",
"\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
- "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00, ?it/s]\n",
- "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 296.04it/s]\n",
- "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00, ?it/s]\n",
- "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n",
- "Plotting labels... \n",
+ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '/content/datasets/coco128/labels/train2017' images and labels...128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00<00:00, 405.04it/s]\n",
+ "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/datasets/coco128/labels/train2017.cache\n",
+ "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 977.19it/s]\n",
+ "\u001b[34m\u001b[1mval: \u001b[0mScanning '/content/datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupt: 100% 128/128 [00:00, ?it/s]\n",
+ "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 219.82it/s]\n",
+ "Plotting labels to runs/train/exp/labels.jpg... \n",
"\n",
- "\u001b[34m\u001b[1mAutoAnchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
+ "\u001b[34m\u001b[1mAutoAnchor: \u001b[0m4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅\n",
"Image sizes 640 train, 640 val\n",
- "Using 2 dataloader workers\n",
+ "Using 8 dataloader workers\n",
"Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
"Starting training for 3 epochs...\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
- " 0/2 3.62G 0.04621 0.0711 0.02112 203 640: 100% 8/8 [00:04<00:00, 1.99it/s]\n",
- " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.37it/s]\n",
- " all 128 929 0.655 0.547 0.622 0.41\n",
+ " 0/2 3.72G 0.04609 0.06259 0.01898 260 640: 100% 8/8 [00:03<00:00, 2.30it/s]\n",
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.54it/s]\n",
+ " all 128 929 0.727 0.63 0.717 0.469\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
- " 1/2 5.31G 0.04564 0.06898 0.02116 143 640: 100% 8/8 [00:01<00:00, 4.77it/s]\n",
- " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.27it/s]\n",
- " all 128 929 0.68 0.554 0.632 0.419\n",
+ " 1/2 4.57G 0.04466 0.06904 0.01721 210 640: 100% 8/8 [00:00<00:00, 8.54it/s]\n",
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.79it/s]\n",
+ " all 128 929 0.76 0.646 0.746 0.48\n",
"\n",
" Epoch gpu_mem box obj cls labels img_size\n",
- " 2/2 5.31G 0.04487 0.06883 0.01998 253 640: 100% 8/8 [00:01<00:00, 4.91it/s]\n",
- " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.30it/s]\n",
- " all 128 929 0.71 0.544 0.629 0.423\n",
+ " 2/2 4.57G 0.04489 0.06446 0.01634 269 640: 100% 8/8 [00:00<00:00, 9.18it/s]\n",
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 6.04it/s]\n",
+ " all 128 929 0.807 0.641 0.76 0.494\n",
"\n",
"3 epochs completed in 0.003 hours.\n",
"Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
@@ -804,80 +822,80 @@
"\n",
"Validating runs/train/exp/weights/best.pt...\n",
"Fusing layers... \n",
- "Model Summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n",
- " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.04it/s]\n",
- " all 128 929 0.71 0.544 0.63 0.423\n",
- " person 128 254 0.816 0.669 0.774 0.507\n",
- " bicycle 128 6 0.799 0.667 0.614 0.371\n",
- " car 128 46 0.803 0.355 0.486 0.209\n",
- " motorcycle 128 5 0.704 0.6 0.791 0.583\n",
- " airplane 128 6 1 0.795 0.995 0.717\n",
- " bus 128 7 0.656 0.714 0.72 0.606\n",
- " train 128 3 0.852 1 0.995 0.682\n",
- " truck 128 12 0.521 0.25 0.395 0.215\n",
- " boat 128 6 0.795 0.333 0.445 0.137\n",
- " traffic light 128 14 0.576 0.143 0.24 0.161\n",
- " stop sign 128 2 0.636 0.5 0.828 0.713\n",
- " bench 128 9 0.972 0.444 0.575 0.25\n",
- " bird 128 16 0.939 0.968 0.988 0.645\n",
- " cat 128 4 0.984 0.75 0.822 0.694\n",
- " dog 128 9 0.888 0.667 0.903 0.54\n",
- " horse 128 2 0.689 1 0.995 0.697\n",
- " elephant 128 17 0.96 0.882 0.943 0.681\n",
- " bear 128 1 0.549 1 0.995 0.995\n",
- " zebra 128 4 0.86 1 0.995 0.952\n",
- " giraffe 128 9 0.822 0.778 0.905 0.57\n",
- " backpack 128 6 1 0.309 0.457 0.195\n",
- " umbrella 128 18 0.775 0.576 0.74 0.418\n",
- " handbag 128 19 0.628 0.105 0.167 0.111\n",
- " tie 128 7 0.96 0.571 0.701 0.441\n",
- " suitcase 128 4 1 0.895 0.995 0.621\n",
- " frisbee 128 5 0.641 0.8 0.798 0.664\n",
- " skis 128 1 0.627 1 0.995 0.497\n",
- " snowboard 128 7 0.988 0.714 0.768 0.556\n",
- " sports ball 128 6 0.671 0.5 0.579 0.339\n",
- " kite 128 10 0.631 0.515 0.598 0.221\n",
- " baseball bat 128 4 0.47 0.456 0.277 0.137\n",
- " baseball glove 128 7 0.459 0.429 0.334 0.182\n",
- " skateboard 128 5 0.7 0.48 0.736 0.548\n",
- " tennis racket 128 7 0.559 0.571 0.538 0.315\n",
- " bottle 128 18 0.607 0.389 0.484 0.282\n",
- " wine glass 128 16 0.722 0.812 0.82 0.385\n",
- " cup 128 36 0.881 0.361 0.532 0.312\n",
- " fork 128 6 0.384 0.167 0.239 0.191\n",
- " knife 128 16 0.908 0.616 0.681 0.443\n",
- " spoon 128 22 0.836 0.364 0.536 0.264\n",
- " bowl 128 28 0.793 0.536 0.633 0.471\n",
- " banana 128 1 0 0 0.142 0.0995\n",
- " sandwich 128 2 0 0 0.0951 0.0717\n",
- " orange 128 4 1 0 0.67 0.317\n",
- " broccoli 128 11 0.345 0.182 0.283 0.243\n",
- " carrot 128 24 0.688 0.459 0.612 0.402\n",
- " hot dog 128 2 0.424 0.771 0.497 0.473\n",
- " pizza 128 5 0.622 1 0.824 0.551\n",
- " donut 128 14 0.703 1 0.952 0.853\n",
- " cake 128 4 0.733 1 0.945 0.777\n",
- " chair 128 35 0.512 0.486 0.488 0.222\n",
- " couch 128 6 0.68 0.36 0.746 0.406\n",
- " potted plant 128 14 0.797 0.714 0.808 0.482\n",
- " bed 128 3 1 0 0.474 0.318\n",
- " dining table 128 13 0.852 0.445 0.478 0.315\n",
- " toilet 128 2 0.512 0.5 0.554 0.487\n",
- " tv 128 2 0.754 1 0.995 0.895\n",
- " laptop 128 3 1 0 0.39 0.147\n",
- " mouse 128 2 1 0 0.0283 0.0226\n",
- " remote 128 8 0.747 0.625 0.636 0.488\n",
- " cell phone 128 8 0.555 0.166 0.417 0.222\n",
- " microwave 128 3 0.417 1 0.995 0.732\n",
- " oven 128 5 0.37 0.4 0.432 0.249\n",
- " sink 128 6 0.356 0.167 0.269 0.149\n",
- " refrigerator 128 5 0.705 0.8 0.814 0.45\n",
- " book 128 29 0.628 0.138 0.298 0.136\n",
- " clock 128 9 0.857 0.778 0.893 0.574\n",
- " vase 128 2 0.242 1 0.663 0.622\n",
- " scissors 128 1 1 0 0.0207 0.00207\n",
- " teddy bear 128 21 0.847 0.381 0.622 0.345\n",
- " toothbrush 128 5 0.99 0.6 0.662 0.45\n",
+ "Model summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n",
+ " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.31it/s]\n",
+ " all 128 929 0.809 0.642 0.76 0.493\n",
+ " person 128 254 0.872 0.693 0.82 0.519\n",
+ " bicycle 128 6 0.75 0.501 0.623 0.376\n",
+ " car 128 46 0.666 0.521 0.557 0.207\n",
+ " motorcycle 128 5 1 0.919 0.995 0.678\n",
+ " airplane 128 6 0.948 1 0.995 0.751\n",
+ " bus 128 7 0.84 0.714 0.723 0.642\n",
+ " train 128 3 1 0.631 0.863 0.561\n",
+ " truck 128 12 0.638 0.417 0.481 0.241\n",
+ " boat 128 6 1 0.299 0.418 0.0863\n",
+ " traffic light 128 14 0.637 0.254 0.372 0.225\n",
+ " stop sign 128 2 0.812 1 0.995 0.796\n",
+ " bench 128 9 0.737 0.444 0.615 0.233\n",
+ " bird 128 16 0.965 1 0.995 0.666\n",
+ " cat 128 4 0.856 1 0.995 0.797\n",
+ " dog 128 9 1 0.65 0.886 0.637\n",
+ " horse 128 2 0.822 1 0.995 0.647\n",
+ " elephant 128 17 0.963 0.882 0.932 0.69\n",
+ " bear 128 1 0.699 1 0.995 0.895\n",
+ " zebra 128 4 0.877 1 0.995 0.947\n",
+ " giraffe 128 9 0.898 1 0.995 0.644\n",
+ " backpack 128 6 0.994 0.667 0.808 0.333\n",
+ " umbrella 128 18 0.828 0.667 0.865 0.493\n",
+ " handbag 128 19 0.882 0.211 0.357 0.175\n",
+ " tie 128 7 0.834 0.719 0.837 0.493\n",
+ " suitcase 128 4 0.853 1 0.995 0.522\n",
+ " frisbee 128 5 0.706 0.8 0.8 0.74\n",
+ " skis 128 1 0.796 1 0.995 0.398\n",
+ " snowboard 128 7 0.903 0.714 0.852 0.546\n",
+ " sports ball 128 6 0.621 0.667 0.603 0.293\n",
+ " kite 128 10 0.846 0.553 0.625 0.259\n",
+ " baseball bat 128 4 0.465 0.25 0.384 0.163\n",
+ " baseball glove 128 7 0.731 0.429 0.466 0.304\n",
+ " skateboard 128 5 1 0.557 0.858 0.49\n",
+ " tennis racket 128 7 0.78 0.429 0.635 0.298\n",
+ " bottle 128 18 0.55 0.339 0.578 0.283\n",
+ " wine glass 128 16 0.7 0.938 0.925 0.499\n",
+ " cup 128 36 0.802 0.789 0.844 0.492\n",
+ " fork 128 6 1 0.326 0.439 0.302\n",
+ " knife 128 16 0.779 0.5 0.68 0.392\n",
+ " spoon 128 22 0.821 0.417 0.629 0.338\n",
+ " bowl 128 28 0.781 0.607 0.753 0.51\n",
+ " banana 128 1 0.923 1 0.995 0.0995\n",
+ " sandwich 128 2 1 0 0.606 0.545\n",
+ " orange 128 4 0.959 1 0.995 0.691\n",
+ " broccoli 128 11 0.483 0.455 0.466 0.337\n",
+ " carrot 128 24 0.85 0.542 0.73 0.506\n",
+ " hot dog 128 2 0.587 1 0.828 0.712\n",
+ " pizza 128 5 0.882 0.8 0.962 0.687\n",
+ " donut 128 14 0.702 1 0.981 0.846\n",
+ " cake 128 4 0.875 1 0.995 0.858\n",
+ " chair 128 35 0.639 0.608 0.624 0.303\n",
+ " couch 128 6 1 0.592 0.857 0.539\n",
+ " potted plant 128 14 0.76 0.786 0.835 0.471\n",
+ " bed 128 3 1 0 0.806 0.557\n",
+ " dining table 128 13 0.824 0.362 0.602 0.403\n",
+ " toilet 128 2 0.978 1 0.995 0.846\n",
+ " tv 128 2 0.702 1 0.995 0.796\n",
+ " laptop 128 3 1 0 0.83 0.532\n",
+ " mouse 128 2 1 0 0.0931 0.0466\n",
+ " remote 128 8 1 0.6 0.659 0.534\n",
+ " cell phone 128 8 0.712 0.25 0.439 0.204\n",
+ " microwave 128 3 0.811 1 0.995 0.734\n",
+ " oven 128 5 0.46 0.4 0.44 0.29\n",
+ " sink 128 6 0.359 0.167 0.302 0.211\n",
+ " refrigerator 128 5 0.657 0.8 0.804 0.532\n",
+ " book 128 29 0.624 0.207 0.298 0.165\n",
+ " clock 128 9 0.798 0.889 0.888 0.692\n",
+ " vase 128 2 0.495 1 0.995 0.92\n",
+ " scissors 128 1 1 0 0.995 0.199\n",
+ " teddy bear 128 21 0.871 0.646 0.826 0.527\n",
+ " toothbrush 128 5 0.828 1 0.962 0.647\n",
"Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
]
}