-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy path6TwS.py
67 lines (50 loc) · 1.53 KB
/
6TwS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#Techgym-6-7-A
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import japanize_matplotlib
from scipy import stats
%precision 3
%matplotlib inline
#データフレーム
df = pd.read_csv('./scores400.csv')
#点数
scores = np.array(df['点数'])
#標本データ
np.random.seed(0)
n = 20
sample = np.random.choice(scores, n)
s_mean = np.mean(sample)
#はじめに選んだ20個の標本の不偏分散
u_var = np.var(sample, ddof=1)
#母分散が未知の場合の区間推定
rv = stats.t(df=n-1)
lcl = s_mean - rv.isf(0.025) * np.sqrt(u_var/n)
ucl = s_mean - rv.isf(0.975) * np.sqrt(u_var/n)
print("区間推定(母分散が未知の場合)",lcl, ucl)
#ベルヌーイ分布
enquete_df = pd.read_csv('./enquete.csv')
enquete = np.array(enquete_df['知っている'])
n = len(enquete)
print(enquete[:10])
#平均
s_mean = enquete.mean()
print("平均",s_mean)
#区間推定
rv = stats.norm()
lcl = s_mean - rv.isf(0.025) * np.sqrt(s_mean*(1-s_mean)/n)
ucl = s_mean - rv.isf(0.975) * np.sqrt(s_mean*(1-s_mean)/n)
print("区間推定(ベルヌーイ分布)",lcl, ucl)
#ポアソン分布
n_access_df = pd.read_csv('./access.csv')
n_access = np.array(n_access_df['アクセス数'])
n = len(n_access)
print(n_access[:10])
#平均
s_mean = n_access.mean()
print("平均",s_mean)
#区間推定
rv = stats.norm()
lcl = s_mean - rv.isf(0.025) * np.sqrt(s_mean/n)
ucl = s_mean - rv.isf(0.975) * np.sqrt(s_mean/n)
print("区間推定(ポアソン分布)",lcl, ucl)