-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathAi7t.py
40 lines (31 loc) · 1.13 KB
/
Ai7t.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
import numpy as np
from sklearn import svm
train = pd.read_csv("titanic_train.csv")
test = pd.read_csv("titanic_test.csv")
# 欠損値の補完
def comp_table(df):
df["Age"] = df["Age"].fillna(-0.5)
# 0 => 値なし, 1 => 16歳以下の子供, 2 => 大人と定義
df["Age_types"] = pd.cut(df["Age"],[-1, 0, 16, 100],labels=[0, 1, 2])
df["Embarked"] = df["Embarked"].fillna("S")
df["Fare"] = df["Fare"].fillna(test["Fare"].median())
return df
train = comp_table(train)
train = train.drop("Cabin", axis=1)
test = comp_table(test)
test = test.drop("Cabin", axis=1)
# SVM
# 特徴量の抽出
# 学習
# 学習用のコードをここに記述
# モデル適用
# 出力関数
def output(result, df):
# PassengerIdを取得
PassengerId = np.array(df["PassengerId"]).astype(int)
# my_prediction(予測データ)とPassengerIdをデータフレームへ落とし込む
my_solution = pd.DataFrame(result, PassengerId, columns = ["Survived"])
return my_solution
# my_tree_one.csvとして書き出し
output(my_svm_pred, test).to_csv("my_svm_result_1.csv", index_label = ["PassengerId"])