-
Notifications
You must be signed in to change notification settings - Fork 613
/
Copy pathgelu.py
54 lines (44 loc) · 1.84 KB
/
gelu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implements GELU activation."""
import tensorflow as tf
from tensorflow_addons.activations import gelu
from typeguard import typechecked
@tf.keras.utils.register_keras_serializable(package="Addons")
class GELU(tf.keras.layers.Layer):
"""Gaussian Error Linear Unit.
A smoother version of ReLU generally used
in the BERT or BERT architecture based models.
Original paper: https://arxiv.org/abs/1606.08415
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
"""
@typechecked
def __init__(self, approximate: bool = True, **kwargs):
super().__init__(**kwargs)
self.approximate = approximate
self.supports_masking = True
def call(self, inputs):
return gelu(inputs, approximate=self.approximate)
def get_config(self):
config = {"approximate": self.approximate}
base_config = super().get_config()
return {**base_config, **config}
def compute_output_shape(self, input_shape):
return input_shape