-
Notifications
You must be signed in to change notification settings - Fork 45.7k
/
Copy pathdataset_builder.py
264 lines (228 loc) · 11 KB
/
dataset_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""tf.data.Dataset builder.
Creates data sources for DetectionModels from an InputReader config. See
input_reader.proto for options.
Note: If users wishes to also use their own InputReaders with the Object
Detection configuration framework, they should define their own builder function
that wraps the build function.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import math
import tensorflow.compat.v1 as tf
from object_detection.builders import decoder_builder
from object_detection.protos import input_reader_pb2
def make_initializable_iterator(dataset):
"""Creates an iterator, and initializes tables.
This is useful in cases where make_one_shot_iterator wouldn't work because
the graph contains a hash table that needs to be initialized.
Args:
dataset: A `tf.data.Dataset` object.
Returns:
A `tf.data.Iterator`.
"""
iterator = dataset.make_initializable_iterator()
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
return iterator
def _read_dataset_internal(file_read_func,
input_files,
num_readers,
config,
filename_shard_fn=None):
"""Reads a dataset, and handles repetition and shuffling.
Args:
file_read_func: Function to use in tf_data.parallel_interleave, to read
every individual file into a tf.data.Dataset.
input_files: A list of file paths to read.
num_readers: Number of readers to use.
config: A input_reader_builder.InputReader object.
filename_shard_fn: optional, A function used to shard filenames across
replicas. This function takes as input a TF dataset of filenames and is
expected to return its sharded version. It is useful when the dataset is
being loaded on one of possibly many replicas and we want to evenly shard
the files between the replicas.
Returns:
A tf.data.Dataset of (undecoded) tf-records based on config.
Raises:
RuntimeError: If no files are found at the supplied path(s).
"""
filenames = tf.gfile.Glob(input_files)
tf.logging.info('Reading record datasets for input file: %s' % input_files)
tf.logging.info('Number of filenames to read: %s' % len(filenames))
if not filenames:
raise RuntimeError('Did not find any input files matching the glob pattern '
'{}'.format(input_files))
if num_readers > len(filenames):
num_readers = len(filenames)
tf.logging.warning('num_readers has been reduced to %d to match input file '
'shards.' % num_readers)
filename_dataset = tf.data.Dataset.from_tensor_slices(filenames)
if config.shuffle:
filename_dataset = filename_dataset.shuffle(
config.filenames_shuffle_buffer_size)
elif num_readers > 1:
tf.logging.warning('`shuffle` is false, but the input data stream is '
'still slightly shuffled since `num_readers` > 1.')
if filename_shard_fn:
filename_dataset = filename_shard_fn(filename_dataset)
filename_dataset = filename_dataset.repeat(config.num_epochs or None)
records_dataset = filename_dataset.apply(
tf.data.experimental.parallel_interleave(
file_read_func,
cycle_length=num_readers,
block_length=config.read_block_length,
sloppy=config.shuffle))
if config.shuffle:
records_dataset = records_dataset.shuffle(config.shuffle_buffer_size)
return records_dataset
def read_dataset(file_read_func, input_files, config, filename_shard_fn=None):
"""Reads multiple datasets with sampling.
Args:
file_read_func: Function to use in tf_data.parallel_interleave, to read
every individual file into a tf.data.Dataset.
input_files: A list of file paths to read.
config: A input_reader_builder.InputReader object.
filename_shard_fn: optional, A function used to shard filenames across
replicas. This function takes as input a TF dataset of filenames and is
expected to return its sharded version. It is useful when the dataset is
being loaded on one of possibly many replicas and we want to evenly shard
the files between the replicas.
Returns:
A tf.data.Dataset of (undecoded) tf-records based on config.
Raises:
RuntimeError: If no files are found at the supplied path(s).
"""
if config.sample_from_datasets_weights:
tf.logging.info('Reading weighted datasets: %s' % input_files)
if len(input_files) != len(config.sample_from_datasets_weights):
raise ValueError('Expected the number of input files to be the same as '
'the number of dataset sample weights. But got '
'[input_files, sample_from_datasets_weights]: [' +
input_files + ', ' +
str(config.sample_from_datasets_weights) + ']')
tf.logging.info('Sampling from datasets %s with weights %s' %
(input_files, config.sample_from_datasets_weights))
records_datasets = []
dataset_weights = []
for i, input_file in enumerate(input_files):
weight = config.sample_from_datasets_weights[i]
num_readers = math.ceil(config.num_readers *
weight /
sum(config.sample_from_datasets_weights))
tf.logging.info(
'Num readers for dataset [%s]: %d', input_file, num_readers)
if num_readers == 0:
tf.logging.info('Skipping dataset due to zero weights: %s', input_file)
continue
tf.logging.info(
'Num readers for dataset [%s]: %d', input_file, num_readers)
records_dataset = _read_dataset_internal(file_read_func, [input_file],
num_readers, config,
filename_shard_fn)
dataset_weights.append(weight)
records_datasets.append(records_dataset)
return tf.data.experimental.sample_from_datasets(records_datasets,
dataset_weights)
else:
tf.logging.info('Reading unweighted datasets: %s' % input_files)
return _read_dataset_internal(file_read_func, input_files,
config.num_readers, config, filename_shard_fn)
def shard_function_for_context(input_context):
"""Returns a function that shards filenames based on the input context."""
if input_context is None:
return None
def shard_fn(dataset):
return dataset.shard(
input_context.num_input_pipelines, input_context.input_pipeline_id)
return shard_fn
def build(input_reader_config, batch_size=None, transform_input_data_fn=None,
input_context=None, reduce_to_frame_fn=None):
"""Builds a tf.data.Dataset.
Builds a tf.data.Dataset by applying the `transform_input_data_fn` on all
records. Applies a padded batch to the resulting dataset.
Args:
input_reader_config: A input_reader_pb2.InputReader object.
batch_size: Batch size. If batch size is None, no batching is performed.
transform_input_data_fn: Function to apply transformation to all records,
or None if no extra decoding is required.
input_context: optional, A tf.distribute.InputContext object used to
shard filenames and compute per-replica batch_size when this function
is being called per-replica.
reduce_to_frame_fn: Function that extracts frames from tf.SequenceExample
type input data.
Returns:
A tf.data.Dataset based on the input_reader_config.
Raises:
ValueError: On invalid input reader proto.
ValueError: If no input paths are specified.
"""
if not isinstance(input_reader_config, input_reader_pb2.InputReader):
raise ValueError('input_reader_config not of type '
'input_reader_pb2.InputReader.')
decoder = decoder_builder.build(input_reader_config)
if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
config = input_reader_config.tf_record_input_reader
if not config.input_path:
raise ValueError('At least one input path must be specified in '
'`input_reader_config`.')
def dataset_map_fn(dataset, fn_to_map, batch_size=None,
input_reader_config=None):
"""Handles whether or not to use the legacy map function.
Args:
dataset: A tf.Dataset.
fn_to_map: The function to be mapped for that dataset.
batch_size: Batch size. If batch size is None, no batching is performed.
input_reader_config: A input_reader_pb2.InputReader object.
Returns:
A tf.data.Dataset mapped with fn_to_map.
"""
if hasattr(dataset, 'map_with_legacy_function'):
if batch_size:
num_parallel_calls = batch_size * (
input_reader_config.num_parallel_batches)
else:
num_parallel_calls = input_reader_config.num_parallel_map_calls
dataset = dataset.map_with_legacy_function(
fn_to_map, num_parallel_calls=num_parallel_calls)
else:
dataset = dataset.map(fn_to_map, tf.data.experimental.AUTOTUNE)
return dataset
shard_fn = shard_function_for_context(input_context)
if input_context is not None:
batch_size = input_context.get_per_replica_batch_size(batch_size)
dataset = read_dataset(
functools.partial(tf.data.TFRecordDataset, buffer_size=8 * 1000 * 1000),
config.input_path[:], input_reader_config, filename_shard_fn=shard_fn)
if input_reader_config.sample_1_of_n_examples > 1:
dataset = dataset.shard(input_reader_config.sample_1_of_n_examples, 0)
# TODO(rathodv): make batch size a required argument once the old binaries
# are deleted.
dataset = dataset_map_fn(dataset, decoder.decode, batch_size,
input_reader_config)
if reduce_to_frame_fn:
dataset = reduce_to_frame_fn(dataset, dataset_map_fn, batch_size,
input_reader_config)
if transform_input_data_fn is not None:
dataset = dataset_map_fn(dataset, transform_input_data_fn,
batch_size, input_reader_config)
if batch_size:
dataset = dataset.batch(batch_size,
drop_remainder=input_reader_config.drop_remainder)
dataset = dataset.prefetch(input_reader_config.num_prefetch_batches)
return dataset
raise ValueError('Unsupported input_reader_config.')