-
Notifications
You must be signed in to change notification settings - Fork 815
/
Copy pathtacotron_dataset.py
executable file
·284 lines (248 loc) · 9.86 KB
/
tacotron_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tacotron Related Dataset modules."""
import itertools
import logging
import os
import random
import numpy as np
import tensorflow as tf
from tensorflow_tts.datasets.abstract_dataset import AbstractDataset
from tensorflow_tts.utils import find_files
class CharactorMelDataset(AbstractDataset):
"""Tensorflow Charactor Mel dataset."""
def __init__(
self,
dataset,
root_dir,
charactor_query="*-ids.npy",
mel_query="*-norm-feats.npy",
align_query="",
charactor_load_fn=np.load,
mel_load_fn=np.load,
mel_length_threshold=0,
reduction_factor=1,
mel_pad_value=0.0,
char_pad_value=0,
ga_pad_value=-1.0,
g=0.2,
use_fixed_shapes=False,
):
"""Initialize dataset.
Args:
root_dir (str): Root directory including dumped files.
charactor_query (str): Query to find charactor files in root_dir.
mel_query (str): Query to find feature files in root_dir.
charactor_load_fn (func): Function to load charactor file.
align_query (str): Query to find FAL files in root_dir. If empty, we use stock guided attention loss
mel_load_fn (func): Function to load feature file.
mel_length_threshold (int): Threshold to remove short feature files.
reduction_factor (int): Reduction factor on Tacotron-2 paper.
mel_pad_value (float): Padding value for mel-spectrogram.
char_pad_value (int): Padding value for charactor.
ga_pad_value (float): Padding value for guided attention.
g (float): G value for guided attention.
use_fixed_shapes (bool): Use fixed shape for mel targets or not.
max_char_length (int): maximum charactor length if use_fixed_shapes=True.
max_mel_length (int): maximum mel length if use_fixed_shapes=True
"""
# find all of charactor and mel files.
charactor_files = sorted(find_files(root_dir, charactor_query))
mel_files = sorted(find_files(root_dir, mel_query))
mel_lengths = [mel_load_fn(f).shape[0] for f in mel_files]
char_lengths = [charactor_load_fn(f).shape[0] for f in charactor_files]
# assert the number of files
assert len(mel_files) != 0, f"Not found any mels files in ${root_dir}."
assert (
len(mel_files) == len(charactor_files) == len(mel_lengths)
), f"Number of charactor, mel and duration files are different \
({len(mel_files)} vs {len(charactor_files)} vs {len(mel_lengths)})."
self.align_files = []
if len(align_query) > 1:
align_files = sorted(find_files(root_dir, align_query))
assert len(align_files) == len(
mel_files
), f"Number of align files ({len(align_files)}) and mel files ({len(mel_files)}) are different"
logging.info("Using FAL loss")
self.align_files = align_files
else:
logging.info("Using guided attention loss")
if ".npy" in charactor_query:
suffix = charactor_query[1:]
utt_ids = [os.path.basename(f).replace(suffix, "") for f in charactor_files]
# set global params
self.utt_ids = utt_ids
self.mel_files = mel_files
self.charactor_files = charactor_files
self.mel_load_fn = mel_load_fn
self.charactor_load_fn = charactor_load_fn
self.mel_lengths = mel_lengths
self.char_lengths = char_lengths
self.reduction_factor = reduction_factor
self.mel_length_threshold = mel_length_threshold
self.mel_pad_value = mel_pad_value
self.char_pad_value = char_pad_value
self.ga_pad_value = ga_pad_value
self.g = g
self.use_fixed_shapes = use_fixed_shapes
self.max_char_length = np.max(char_lengths)
if np.max(mel_lengths) % self.reduction_factor == 0:
self.max_mel_length = np.max(mel_lengths)
else:
self.max_mel_length = (
np.max(mel_lengths)
+ self.reduction_factor
- np.max(mel_lengths) % self.reduction_factor
)
def get_args(self):
return [self.utt_ids]
def generator(self, utt_ids):
for i, utt_id in enumerate(utt_ids):
mel_file = self.mel_files[i]
charactor_file = self.charactor_files[i]
align_file = self.align_files[i] if len(self.align_files) > 1 else ""
items = {
"utt_ids": utt_id,
"mel_files": mel_file,
"charactor_files": charactor_file,
"align_files": align_file,
}
yield items
@tf.function
def _load_data(self, items):
mel = tf.numpy_function(np.load, [items["mel_files"]], tf.float32)
charactor = tf.numpy_function(np.load, [items["charactor_files"]], tf.int32)
g_att = (
tf.numpy_function(np.load, [items["align_files"]], tf.float32)
if len(self.align_files) > 1
else None
)
mel_length = len(mel)
char_length = len(charactor)
# padding mel to make its length is multiple of reduction factor.
real_mel_length = mel_length
remainder = mel_length % self.reduction_factor
if remainder != 0:
new_mel_length = mel_length + self.reduction_factor - remainder
mel = tf.pad(
mel,
[[0, new_mel_length - mel_length], [0, 0]],
constant_values=self.mel_pad_value,
)
mel_length = new_mel_length
items = {
"utt_ids": items["utt_ids"],
"input_ids": charactor,
"input_lengths": char_length,
"speaker_ids": 0,
"mel_gts": mel,
"mel_lengths": mel_length,
"real_mel_lengths": real_mel_length,
"g_attentions": g_att,
}
return items
def _guided_attention(self, items):
"""Guided attention. Refer to page 3 on the paper (https://arxiv.org/abs/1710.08969)."""
items = items.copy()
mel_len = items["mel_lengths"] // self.reduction_factor
char_len = items["input_lengths"]
xv, yv = tf.meshgrid(tf.range(char_len), tf.range(mel_len), indexing="ij")
f32_matrix = tf.cast(yv / mel_len - xv / char_len, tf.float32)
items["g_attentions"] = 1.0 - tf.math.exp(
-(f32_matrix ** 2) / (2 * self.g ** 2)
)
return items
def create(
self,
allow_cache=False,
batch_size=1,
is_shuffle=False,
map_fn=None,
reshuffle_each_iteration=True,
drop_remainder=True,
):
"""Create tf.dataset function."""
output_types = self.get_output_dtypes()
datasets = tf.data.Dataset.from_generator(
self.generator, output_types=output_types, args=(self.get_args())
)
# load data
datasets = datasets.map(
lambda items: self._load_data(items), tf.data.experimental.AUTOTUNE
)
# calculate guided attention
if len(self.align_files) < 1:
datasets = datasets.map(
lambda items: self._guided_attention(items),
tf.data.experimental.AUTOTUNE,
)
datasets = datasets.filter(
lambda x: x["mel_lengths"] > self.mel_length_threshold
)
if allow_cache:
datasets = datasets.cache()
if is_shuffle:
datasets = datasets.shuffle(
self.get_len_dataset(),
reshuffle_each_iteration=reshuffle_each_iteration,
)
# define padding value.
padding_values = {
"utt_ids": " ",
"input_ids": self.char_pad_value,
"input_lengths": 0,
"speaker_ids": 0,
"mel_gts": self.mel_pad_value,
"mel_lengths": 0,
"real_mel_lengths": 0,
"g_attentions": self.ga_pad_value,
}
# define padded shapes.
padded_shapes = {
"utt_ids": [],
"input_ids": [None]
if self.use_fixed_shapes is False
else [self.max_char_length],
"input_lengths": [],
"speaker_ids": [],
"mel_gts": [None, 80]
if self.use_fixed_shapes is False
else [self.max_mel_length, 80],
"mel_lengths": [],
"real_mel_lengths": [],
"g_attentions": [None, None]
if self.use_fixed_shapes is False
else [self.max_char_length, self.max_mel_length // self.reduction_factor],
}
datasets = datasets.padded_batch(
batch_size,
padded_shapes=padded_shapes,
padding_values=padding_values,
drop_remainder=drop_remainder,
)
datasets = datasets.prefetch(tf.data.experimental.AUTOTUNE)
return datasets
def get_output_dtypes(self):
output_types = {
"utt_ids": tf.string,
"mel_files": tf.string,
"charactor_files": tf.string,
"align_files": tf.string,
}
return output_types
def get_len_dataset(self):
return len(self.utt_ids)
def __name__(self):
return "CharactorMelDataset"