-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathindex.html
338 lines (308 loc) · 10.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
---
layout: default
title: Practical Machine Learning with TensorFlow 2.0
---
<div class="blurb">
<h1>Practical Machine Learning with TensorFlow 2.0</h1>
<p>
Welcome to <a href='https://swayam.gov.in/nd1_noc19_cs81/'>Practical Machine Learning with TensorFlow 2.0</a> MOOC.
As the name suggests we will mainly focus on practical aspects of ML that involves writing code in Python with
TensorFlow 2.0 API. In every session, we will review the concept from theory point of view and then jump straight
into implementation. We will be using <a href='http://colab.research.google.com'>Google Colab</a> as a platform
for coding these models. We will mainly cover material from the following page:
<a href='https://www.tensorflow.org/beta'>https://www.tensorflow.org/beta</a></p>
<p>I would strongly advise students to run the code and experience how the code works. Once you get the basic idea
of the concept and its implementation, you can spend some time looking at the details of each function from
<a href='https://www.tensorflow.org/versions/r2.0/api_docs/python/tf'>TF RC 2.0 API</a>.</p>
<p>We will learn how to use tf.Keras and tf.Estimator APIs for building models. We will also learn to use
tf.Dataset API for building input pipelines for bringing data to ML models. Later in the course, we will
learn how to build customized ML models and train them in distributed fashion.</p>
<p>Wish you a great journey of learning TensorFlow with us!</p>
<table border="1" width="80%">
<tr bgcolor='#99c9ff'>
<th>Lecture</th>
<th>Title</th>
<th>Handout/Colabs</th>
</tr>
<tr>
<td> 1 </td>
<td> Introduction to TensorFlow </td>
<td>
<ul>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/HelloWorld.ipynb'>Hello World colab</a>,
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/session_1_beginner.ipynb'>TF For Beginner colab</a>,
</li>
<li>
<a href='https://tfindiamooc.github.io/blog/2019/08/31/TF-Intro'>Handout</a> </td>
</li>
</ul>
</tr>
<tr>
<td colspan=3>Machine Learning - Overview
[<a href='https://tfindiamooc.github.io/blog/2019/08/31/Machine-Learning-Review'>Handout</a>]</td>
</tr>
<tr>
<td> 2 </td>
<td> Machine Learning Refresher </td>
<td> </td>
</tr>
<tr>
<td> 3 </td>
<td> Steps in Machine Learning Process </td>
<td> </td>
</tr>
<tr>
<td> 4 </td>
<td> Loss Functions in Machine Learning </td>
<td> </td>
</tr>
<tr>
<td> 5 </td>
<td> Gradient Descent </td>
<td> </td>
</tr>
<tr>
<td> 6 </td>
<td> Gradient Descent Variations </td>
<td> </td>
</tr>
<tr>
<td> 7 </td>
<td> Model Selection and Evaluation </td>
<td> </td>
</tr>
<tr>
<td colspan=3><a href='https://playground.tensorflow.org'>Neural Network Playground</a></td>
</tr>
<tr>
<td> 8 </td>
<td> Machine Learning Visualization </td>
<td> </td>
</tr>
<tr>
<td colspan=3>Deep Learning Review </td>
</tr>
<tr>
<td> 9 </td>
<td> Deep Learning Refresher </td>
<td> </td>
</tr>
<tr>
<td> 10 </td>
<td> Introduction to Tensor </td>
<td> <a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/MathematicalFoundationsOfDL.ipynb'>Colab</a> </td>
</tr>
<tr>
<td> 11 </td>
<td> Mathematical Foundations of Deep Learning - Cntd </td>
<td> <a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/MathematicalFoundationsOfDL.ipynb'>Colab</a> </td>
</tr>
<tr>
<td colspan=3>Data Handling in TensorFlow 2.0 </td>
</tr>
<tr>
<td> 12 (A/B/C)</td>
<td> Building Data Pipelines for Tensorflow </td>
<td>
<ul>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/data.ipynb'>tf.Data API - colab</a> |
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/csv.ipynb'>Load data from CSV - colab</a> |
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/numpy.ipynb'>Load data from Numpy - colab</a> |
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/from_pandas.ipynb'>Load data from Pandas - colab</a> |
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/images.ipynb'>Data Pipelines for Images - colab</a>
</li>
</ul>
</td>
</tr>
<tr>
<td> 13 </td>
<td> Text Processing with Tensorflow </td>
<td>
<ul>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/text.ipynb'>Data Pipeline for Text - colab</a> |
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/unicode.ipynb'>Handling unicode characters - colab</a> |
</li>
<li>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/tf_text.ipynb'>Using TF.Text library - colab</a>
</li>
</ul>
</td>
</tr>
<tr>
<td colspan=3>Building basic models with TF </td>
</tr>
<tr>
<td> 14 </td>
<td> Classify Images </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 15 </td>
<td> Regression </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/regression.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 16 </td>
<td> Classify Structured Data </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/structured_data/feature_columns.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 17 </td>
<td> Text Classification </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/text_classification_with_hub.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 18 </td>
<td> Underfitting and Overfitting </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/overfit_and_underfit.ipynb?authuser=1'> Colab </a>
</td>
</tr>
<tr>
<td> 19 </td>
<td> Save and Restore Models </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/save_and_load.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td colspan=3>Image models with TF </td>
</tr>
<tr>
<td> 20 </td>
<td> CNNs-Part 1 </td>
<td>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/CNNs_Part1.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 21 </td>
<td> CNNs-Part 2 </td>
<td>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/CNNs_Part1.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 22 </td>
<td> Transfer learning with pretrained CNNs </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/transfer_learning.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 23 </td>
<td> Transfer learning with TF hub </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/images/transfer_learning_with_hub.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 24 </td>
<td> Image classification and visualization </td>
<td>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/image_classification_and_visualization.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 24 </td>
<td> Image classification and visualization </td>
<td>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/image_classification_and_visualization.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td colspan=3>TF Estimator APIs</td>
</tr>
<tr>
<td> 25 </td>
<td> Estimator API </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/estimator/premade.ipynb'>
Pre-made Estimator Colab </a>
</td>
</tr>
<tr>
<td> 26 </td>
<td> Logistic Regression </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/estimator/linear.ipynb'> Logistic Regression Colab </a>
</td>
</tr>
<tr>
<td> 27 </td>
<td> Boosted Trees </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/estimator/boosted_trees.ipynb'> Boosted Trees Colab </a>
</td>
</tr>
<tr>
<td colspan=3>Sequence Models with TF</td>
</tr>
<tr>
<td> 28 </td>
<td> Introduction to Word Embedding </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/word_embeddings.ipynb'> Word Embedding Colab </a>
</td>
</tr>
<tr>
<td> 29 </td>
<td> Recurrent Neural Networks (Part 1) </td>
<td>
<a href='https://colab.research.google.com/github/tfindiamooc/tfindiamooc.github.io/blob/master/colabs/Understanding_recurrent_neural_networks.ipynb'> Colab</a>
</td>
</tr>
<tr>
<td> 30 </td>
<td> Recurrent Neural Networks (Part 2) </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/text_classification_rnn.ipynb'> Text Classification Colab </a>
</td>
</tr>
<tr>
<td> 31 </td>
<td> Time Series Forecasting with RNNs </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/structured_data/time_series.ipynb'> Colab </a>
</td>
</tr>
<tr>
<td> 32 </td>
<td> Text Generation with RNNs </td>
<td>
<a href='https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/text_generation.ipynb'> Colab </a>
</td>
</tr>
</table>
<p>
<h2> Reference Material </h2>
<ul>
<li> Machine Learning by Tom Mitchell</li>
<li> Data Mining by David Hand <i>et. al.</i> </li>
<li> <a href='https://www.tensorflow.org/beta'>TensorFlow Documentation </a></li>
</ul>
</p>
</div><!-- /.blurb -->