-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjetto2torax.py
358 lines (316 loc) · 12.2 KB
/
jetto2torax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from os import PathLike
from typing import TypeAlias
from warnings import warn
import jax.numpy as jnp
import jetto_tools
from jetto_tools.classes import jsp_to_xarray, jst_to_xarray
from torax.constants import CONSTANTS
FileName: TypeAlias = str | bytes | PathLike
def config(
jsp_path: FileName,
jst_path: FileName,
jset_path: FileName | None = None,
eqdsk_path: FileName | None = None,
) -> dict:
"""Create a TORAX configuration dictionary from JETTO files.
Parameters
----------
jsp_path : str | bytes | PathLike
Path to a JSP file.
jst_path : str | bytes | PathLike
Path to a JST file.
jset_path : str | bytes | PathLike | None, optional
Path to a JSET file, defaults to None.
eqdsk_path : str | bytes | PathLike | None, optional
Path to an EQDSK file, defaults to None.
Returns
-------
dict
A TORAX configuration dictionary.
"""
#################
# 1. Load files #
#################
# JSP and JST are required
jsp = jsp_to_xarray(jetto_tools.binary.read_binary_file(jsp_path))
jst = jst_to_xarray(jetto_tools.binary.read_binary_file(jst_path))
# JSET is optional
if jset_path is not None:
with open(jset_path) as f:
# Load the JSET file
jset = jetto_tools.jset.JSET(f.read())
# Convert to arrays rather than strings
jset.collapse_all_arrays()
else:
jset = None
#############################
# 2. Initialise config dict #
#############################
torax_config = {
"runtime_params": {
"plasma_composition": {},
"profile_conditions": {},
"numerics": {},
},
"geometry": {},
"pedestal": {},
"sources": {},
"transport": {},
"stepper": {},
"time_step_calculator": {},
}
###################
# 3. Set numerics #
###################
numerics = torax_config["runtime_params"]["numerics"]
# Reference density [m^-3] - used as a normalising factor for numerical convenience
numerics["nref"] = 1e19
# Equations to solve
numerics["ion_heat_eq"] = True
numerics["el_heat_eq"] = True
numerics["current_eq"] = True
numerics["dens_eq"] = True
# Make TORAX time start from 0
time_offset = jst.time.values[0]
time = jst.time.values - time_offset
numerics["t_initial"] = 0
numerics["t_final"] = time[-1]
#############################
# 4. Set plasma composition #
#############################
plasma_composition = torax_config["runtime_params"]["plasma_composition"]
# Main species charge
## Only support hydrogen plasmas
plasma_composition["Zi"] = 1.0
if jset is not None:
# Main species mass
species_mass = jnp.array(jset.get("EquationsPanel.ionDens.mass", jnp.nan))
species_fraction = jnp.array(
jset.get("EquationsPanel.ionDens.fraction", jnp.nan)
)
plasma_composition["Ai"] = jnp.sum(species_mass * species_fraction).item()
# Impurities and Zeff
if (
not jset.get("ImpOptionPanel.select", False)
or not jset.get("ImpOptionPanel.source", "") == "Interpretive"
):
warn(
"Impurities not set to interpretive in JSET; Zeff, Zimp, Aimp not set."
)
else:
# Zeff
if not jset.get("ImpInterDialog.source", "") == "Radially Constant":
warn(
"Impurity charge not set to radially constant in JSET; Zeff, Zimp not set."
)
else:
plasma_composition["Zeff"] = jset["ImpInterDialog.norm.value"][0]
if sum(jset.get("ImpOptionPanel.impuritySelect", [])) > 1:
warn("Multiple impurities not supported; Zimp, Aimp not set.")
else:
impurity_index = jset["ImpOptionPanel.impuritySelect"].index(True)
plasma_composition["Zimp"] = jset["ImpOptionPanel.impurityCharge"][impurity_index]
plasma_composition["Aimp"] = jset["ImpOptionPanel.impurityMass"][impurity_index]
else:
warn("JSET not loaded; Ai, Zeff, Zimp, Aimp not set.")
#############################
# 5. Set profile conditions #
#############################
profile_conditions = torax_config["runtime_params"]["profile_conditions"]
rho_norm = jsp.XRHO.values[0]
# Plasma current [MA]
# Note: JETTO current is -ve
profile_conditions["Ip_tot"] = (time, -jst.CUR.values / 1e6)
# Temperature [keV]
## Initial or prescribed profiles
## Note: if evolving the temperature profiles, only the initial value will be used
profile_conditions["Te"] = (time, rho_norm, jsp.TE.values / 1e3)
profile_conditions["Ti"] = (time, rho_norm, jsp.TI.values / 1e3)
## Boundary conditions
profile_conditions["Te_bound_right"] = (time, jst.TEBO.values / 1e3)
profile_conditions["Ti_bound_right"] = (time, jst.TIBO.values / 1e3)
# Density [nref m^-3]
## Initial or prescribed profiles
## Note: if evolving the density profiles, only the initial value will be used
profile_conditions["ne"] = (time, rho_norm, jsp.NE.values / numerics["nref"])
## Boundary conditions
profile_conditions["ne_bound_right"] = (time, jst.NEBO.values / numerics["nref"])
## nbar = line averaged density
profile_conditions["normalize_to_nbar"] = False
profile_conditions["ne_is_fGW"] = False
###############
# 6. Pedestal #
###############
pedestal = torax_config["pedestal"]
pedestal["rho_norm_ped_top"] = (time, jst.ROBA.values)
pedestal["Teped"] = (time, jst.TEBA.values / 1e3)
pedestal["Tiped"] = (time, jst.TIBA.values / 1e3)
pedestal["neped"] = (time, jst.NEBA.values / numerics["nref"])
###############
# 7. Geometry #
###############
if eqdsk_path is not None:
torax_config["geometry"] = {
"geometry_type": "EQDSK",
"geometry_file": eqdsk_path,
"Ip_from_parameters": False,
}
warn(
"JETTO EQDSK may be a different COCOS to TORAX. Conversion not yet implemented."
)
else:
warn("No EQDSK file provided; geometry not set.")
##############
# 7. Sources #
##############
sources = torax_config["sources"]
# Internal plasma sources and sinks
## Ohmic and Qei will always be set
sources["ohmic_heat_source"] = {} # default
sources["qei_source"] = {} # default
## Fusion power
if jset is not None:
if jset.get("FusionPanel.select", False):
sources["fusion_heat_source"] = {} # default
else:
warn("JSET not loaded; fusion heat source not set.")
## Bremsstrahlung
if jset is not None:
if jset.get("RadiationAddPanel.bremsstrahlung", False):
sources["bremsstrahlung_heat_sink"] = {} # default
else:
warn("JSET not loaded; Bremsstrahlung heat not set.")
## Radiation
if jset is not None:
if jset["RadiationPanel.select"]:
if jset["RadiationPanel.source"] == "Radially Constant":
sources["impurity_radiation_heat_sink"] = {
"mode": "model_based",
"fraction_of_total_power_density": jset[
"RadiationPanel.norm.value"
][0],
}
else:
warn(
f"Unrecognised radiation source in JSET (got {jset['RadiationPanel.source']}); radiation heat sink not set."
)
else:
warn("Radiation not selected in JSET; radiation heat sink not set.")
else:
warn("JSET not loaded; radiation heat sink not set.")
## Bootstrap (Sauter model)
if jset is not None:
if jset.get("CurrentPanel.selBootstrap", False):
sources["j_bootstrap"] = {
"mode": "model_based",
"bootstrap_mult": jset["CurrentPanel.bootstrapCoeff"],
}
else:
warn("JSET not loaded; bootstrap current not set.")
# External sources
## Pellet (Continuous)
if jset is not None:
# Pellet is set in a somewhat convoluted way in JSET
sources["pellet_source"] = {
"mode": "formula_based",
"pellet_deposition_location": jset.extras["SPCEN"].as_dict()[None],
"pellet_width": jset.extras["SPWID"].as_dict()[None],
"S_pellet_tot": (time, jst.SPEL.values),
}
else:
warn("JSET not loaded; pellet source not set.")
## Electron-cyclotron Heating (Lin-Liu model)
### Filter QECE to get rid of spurious values
qec = jsp.QECE.values
qec[qec < CONSTANTS.eps] = 0
sources["electron_cyclotron_source"] = {
"mode": "model_based",
"manual_ec_power_density": (time, rho_norm, qec),
# TODO: set this from JETTO
"cd_efficiency": 0.2,
}
################
# 8. Transport #
################
transport = torax_config["transport"]
if jset is not None:
# Bohm-gyroBohm transport model
## Confusingly, JETTO has a hidden set of prefactors hardcoded
if jset.get("TransportStdJettoDialog.selBohm", False) and jset.get(
"TransportStdJettoDialog.selGyroBohm", False
):
transport["transport_model"] = "bohm-gyrobohm"
transport["bohm-gyrobohm_params"] = {
"chi_e_bohm_coeff": jset.get("TransportStdAdvDialog.elecBohmCoeff", 1.0)
* 2e-4,
"chi_e_gyrobohm_coeff": jset.get(
"TransportStdAdvDialog.elecGBohmCoeff", 1.0
)
* 5e-6,
"chi_i_bohm_coeff": jset.get("TransportStdAdvDialog.ionBohmCoeff", 1.0)
* 2e-4,
"chi_i_gyrobohm_coeff": jset.get(
"TransportStdAdvDialog.ionGBohmCoeff", 1.0
)
* 5e-6,
"d_face_c1": jset.get("TransportAdvPanel.DiffusionFirst", 0.0),
"d_face_c2": jset.get("TransportAdvPanel.DiffusionSecond", 0.0),
}
# Check diffusion coefficients
d1_c1 = jset.get("TransportAdvPanel.DiffusionFirst", 0.0)
d1_c2 = jset.get("TransportAdvPanel.DiffusionSecond", 0.0)
d2_c1 = jset.get("TransportAdvPanel.DiffusionFirst2", 0.0)
d2_c2 = jset.get("TransportAdvPanel.DiffusionSecond2", 0.0)
if d1_c1 != d2_c1 or d1_c2 != d2_c2:
warn(
"JETTO has unique values for diffusion coefficients for different species; using the values for species 1 only"
f" (using {d1_c1}, {d1_c2} and discarding {d2_c1}, {d2_c2})."
)
if jset.get("TransportAddPanel.PinchIonOne", 0.5) != 0.5:
warn(
f"JETTO has a pinch coefficient that is not 0.5 (got {jset.get('TransportAddPanel.PinchIonOne', 0.5)});"
"TORAX does not support this; the pinch coefficient will be set to 0.5."
)
# TODO: QLKNN transport model
# elif
# TODO: CGM transport model
# elif
else:
warn("No known transport model selected in JSET; none will be set.")
else:
warn("JSET not loaded; transport model not set.")
#############################
# 8. Return the config dict #
#############################
return torax_config
def jz_to_jdotB(jz, A, rho):
"""Convert a JETTO JZ current density to a <j.B> current density.
Parameters
----------
jz : jnp.ndarray
JETTO JZ current density.
A : jnp.ndarray
Array of flux surface areas.
rho : jnp.ndarray
Radial coordinate (unnormalised).
Returns
-------
jnp.ndarray
<j.B> current density.
"""
return 2 * jnp.pi * rho * jz / jnp.gradient(A, rho)
if __name__ == "__main__":
import argparse
from pathlib import Path
import IPython
parser = argparse.ArgumentParser()
parser.add_argument("path")
args = parser.parse_args()
path = Path(args.path)
CONFIG = config(
jsp_path=path / "jetto.jsp",
jst_path=path / "jetto.jst",
jset_path=path / "jetto.jset",
eqdsk_path=path / "jetto.eqdsk_out",
)
IPython.embed()