-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbjsort.v
1289 lines (1202 loc) · 49 KB
/
bjsort.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From mathcomp Require Import all_ssreflect perm algebra.zmodp.
From mathcomp Require Import zify.
Require Import more_tuple nsort.
Import Order POrderTheory TotalTheory.
(******************************************************************************)
(* Definition of the Knuth exchange sorting algorithm *)
(* *)
(* knuth_merge == the connector that links i to i.+1 for i odd *)
(* knuth_merge_rec == the recursive connect that calls itself on *)
(* the even and odd parts and then apply Batcher_merge *)
(* knuth_exchange == the recursive connect that calls itself on *)
(* the even and odd parts and then apply Batcher_merge *)
(* iknuth_exchange_exchange == an iterative version of knuth that works *)
(* directly on list *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section Knuth.
Variable d : disp_t.
Variable A : orderType d.
Definition clink_eswap m : {ffun 'I_m -> 'I_m} :=
[ffun i : 'I_ _ => if odd i then ipred i else inext i].
Lemma clink_eswap_proof m :
[forall i : 'I_m, clink_eswap _ (clink_eswap _ i) == i].
Proof.
apply/forallP => i /=; apply/eqP/val_eqP; rewrite !ffunE.
have m_gt0 : 0 < m by apply: leq_ltn_trans (ltn_ord i).
have [/= iO|iE] := boolP (odd i); rewrite ?(val_inext, val_ipred) /=.
case: (ltngtP i 0) => // [o_gt0 | iE]; last by rewrite iE in iO.
rewrite -[odd _]negbK -oddS prednK // iO val_inext val_ipred.
rewrite -[i.-1 == _]eqSS !prednK //.
by rewrite [(i : nat) == m]eqn_leq [m <= _]leqNgt ltn_ord andbF.
have [iE1 | /eqP iD] := (i : nat) =P m.-1.
by rewrite (negPf iE) !val_inext /= iE1 !eqxx.
by rewrite oddS (negPf iE) /= /= val_ipred /= val_inext /= (negPf iD).
Qed.
Definition ceswap {m} :=
connector_of (clink_eswap_proof m) (cflip_default _ false).
Lemma cfun_eswap n (t : n.-tuple A) :
cfun ceswap t =
[tuple
if odd i then max (tnth t i) (tnth t (ipred i))
else min (tnth t i) (tnth t (inext i)) | i < n].
Proof.
apply: eq_from_tnth => i /=.
rewrite /ceswap /cfun /=.
rewrite !tnth_map /= !tnth_ord_tuple !ffunE.
have [iO|iE] := boolP (odd i); last by rewrite ifT // val_inext; case: eqP.
case: leqP => [iLip|] //.
suff -> : ipred i = i by rewrite maxxx minxx.
apply/val_eqP =>> /=; move: iLip; rewrite !val_ipred /=.
by case: (i : nat) => //= i1; rewrite ltnn.
Qed.
Fixpoint knuth_jump_rec m k r : network m :=
if k is k1.+1 then codd_jump r :: knuth_jump_rec _ k1 (uphalf r).-1
else [::].
Lemma size_knuth_jump_rec m k : size (knuth_jump_rec m k ((`2^ k).-1)) = k.
Proof.
elim: k => //= k IH.
by rewrite -e2Sn uphalfE prednK ?e2n_gt0 // e2Sn addnn doubleK IH.
Qed.
Fixpoint knuth_exchange m : network (`2^ m) :=
if m is m1.+1 then
neodup (knuth_exchange m1) ++ ceswap :: knuth_jump_rec _ m1 ((`2^ m1).-1)
else [::].
Lemma size_knuth_exchange m : size (knuth_exchange m) = (m * m.+1)./2.
Proof.
elim: m => // m IH.
rewrite [LHS]/= size_cat /neodup /neomerge size_map size_zip minnn IH.
rewrite [LHS]/= size_knuth_jump_rec -addn2 mulnDr halfD.
by rewrite oddM muln2 odd_double andbF add0n doubleK mulnC.
Qed.
End Knuth.
Lemma sorted_eswap m (t : (m + m).-tuple bool) :
sorted <=%O (tetake t) -> sorted <=%O (totake t) ->
let t1 := cfun ceswap t in
[/\ sorted <=%O (tetake t1),
sorted <=%O (totake t1) &
noF (totake t1) <= noF (tetake t1)].
Proof.
rewrite !isorted_noFT => /eqP teE /eqP toE t1.
set a := noF (tetake t) in teE; set b := noT (tetake t) in teE.
set c := noF (totake t) in toE; set d := noT (totake t) in toE.
have mEmaxmin : m = maxn a c + minn b d.
case: (leqP a c) => [aLc | cLa].
rewrite (minn_idPr _); first by rewrite size_noFT size_tuple.
rewrite -(leq_add2l a) size_noFT size_tuple -(size_tuple (totake t)).
by rewrite -size_noFT -/c -/d leq_add2r.
rewrite (minn_idPl _); first by rewrite size_noFT size_tuple.
rewrite -(leq_add2l a) size_noFT size_tuple -(size_tuple (totake t)).
by rewrite -size_noFT -/c -/d leq_add2r ltnW.
have mEminmax : m = minn a c + maxn b d.
case: (leqP a c) => [aLc | cLa].
rewrite (maxn_idPl _); first by rewrite size_noFT size_tuple.
rewrite -(leq_add2l a) size_noFT size_tuple -(size_tuple (totake t)).
by rewrite -size_noFT -/c -/d leq_add2r.
rewrite (maxn_idPr _); first by rewrite size_noFT size_tuple.
rewrite -(leq_add2l a) size_noFT size_tuple -(size_tuple (totake t)).
by rewrite -size_noFT -/c -/d leq_add2r ltnW.
suff t1E : t1 = eocat (nseq (maxn a c) false ++ nseq (minn b d) true)
(nseq (minn a c) false ++ nseq (maxn b d) true) :> seq _.
rewrite tetakeE totakeE t1E otakeK ?etakeK.
by rewrite !isorted_noFT !noE !eqxx; case: (ltngtP a c) => // /ltnW->.
by rewrite !(size_cat, size_nseq) -mEmaxmin.
apply: (@eq_from_nth _ true) => [|i].
rewrite /= [LHS]size_tuple card_ord size_eocat size_cat !size_nseq.
by rewrite -mEmaxmin.
rewrite [X in _ < X -> _]size_tuple => iLab.
pose x := Ordinal iLab.
rewrite /t1 cfun_eswap /= (nth_map x) /= -[i]/(x : nat); last first.
by rewrite -enum_ord size_enum_ord.
rewrite -enum_ord !nth_ord_enum.
rewrite nth_eocat; last first.
by rewrite !size_cat !size_nseq // -mEminmax.
rewrite !(tnth_nth true) [t]eocat_tetake_totake /=.
rewrite !nth_eocat /=; try by rewrite !size_tuple.
have i2Lm : i./2 < m by rewrite ltn_half_double -addnn.
have [iO|iE] := boolP (odd _).
have i_gt0 : 0 < i by case: (i) iO.
have i1E : ~~ odd i.-1 by rewrite -oddS prednK.
rewrite val_ipred /= (negPf i1E).
have -> : i.-1./2 = i./2.
by rewrite -[X in _ = X./2]prednK // -uphalfE uphalf_half (negPf i1E).
by rewrite teE toE !nth_cat_seqT -/a -/c geq_min; do 2 case: leqP => ?.
rewrite val_inext; case: eqP =>/= [i1E| _].
have := iE; rewrite i1E -oddS prednK ?(leq_ltn_trans _ iLab) //.
by rewrite [X in odd X]addnn odd_double.
rewrite (negPf iE) /= uphalf_half (negPf iE) /= add0n.
by rewrite teE toE !nth_cat_seqT -/a -/c geq_max; do 2 case: leqP => ?.
Qed.
Lemma sorted_knuth_jump_rec m (t : (m + m).-tuple bool) k :
sorted <=%O (tetake t) -> sorted <=%O (totake t) ->
noF (totake t) <= noF (tetake t) <= noF (totake t) + `2^ k ->
sorted <=%O (nfun (knuth_jump_rec (m + m) k (`2^ k).-1) t).
Proof.
move=> teS toS /andP[noL noI].
set t1 := nfun _ _.
pose i := noF (tetake t) - noF (totake t).
suff [te1S to1S noFE] : [/\ sorted <=%O (tetake t1),
sorted <=%O (totake t1) &
noF (tetake t1) = noF (totake t1) + odd i].
apply: sorted_tetake_totake => //.
by rewrite noFE; case: odd; rewrite !(addn1, addn0) leqnn leqnSn.
have : i <= `2^ k by rewrite leq_subLR.
elim: k t teS toS @i @t1 {noI} noL => [|k IH] t teS toS i;
rewrite [nfun _ _]/= => t1 nt2Lnt1 iL2k.
rewrite teS toS /i.
move: iL2k; rewrite leq_subLR addn1.
case: ltngtP nt2Lnt1 => // [|->]; last by rewrite subnn addn0.
case: (ltngtP (noF (totake _)).+1) => // <-.
by rewrite subSn // subnn addn1.
move: @t1; set cf := cfun _ _ => t1.
have k2O : odd (`2^ k.+1).-1.
by rewrite -[odd _]negbK -oddS prednK ?e2n_gt0 // e2Sn addnn odd_double.
have uhE : (uphalf (`2^ k.+1).-1).*2 = `2^ k.+1.
by rewrite uphalfE prednK ?e2n_gt0 // e2Sn addnn doubleK -addnn.
have iLuh : i <= (uphalf (`2^ k.+1).-1).*2 by rewrite uhE.
have [] := sorted_odd_jump k2O iLuh teS toS.
by rewrite addnC subnK.
rewrite doubleB uhE -/cf => te1S to1S nteE.
move: @t1; rewrite -e2Sn.
have -> : (uphalf (`2^ k.+1).-1).-1 = (`2^ k).-1.
by rewrite uphalfE prednK ?e2n_gt0 // e2Sn addnn doubleK.
have -> : odd i = odd (noF (tetake cf) - noF (totake cf)).
rewrite nteE addnC addnK oddB.
by rewrite e2Sn addnn -doubleB odd_double addbC.
by rewrite leq_subLR -addnn leq_add2r.
apply: IH => //; first by rewrite nteE leq_addr.
rewrite nteE addnC addnK leq_subLR.
have [iLk|kLi] := leqP i (`2^ k); first by apply: leq_trans (leq_addl _ _).
rewrite e2Sn -addnn subnDA subnK.
by rewrite -addnBA ?leq_addr // ltnW.
rewrite leq_subRL //.
by rewrite !addnn leq_double // ltnW.
by apply: (leq_trans (ltnW _) (leq_addr _ _)).
Qed.
Lemma sorted_nfun_knuth_exchange m (t : (`2^ m).-tuple bool) :
sorted <=%O (nfun (knuth_exchange m) t).
Proof.
elim: m t => [t|m IH t] /=; first by apply: tsorted01.
rewrite nfun_cat /= nfun_eodup.
set v := teocat _ _; have [||ste sto nto] := (@sorted_eswap _ v).
- by rewrite tetakeK IH.
- by rewrite totakeK IH.
apply: sorted_knuth_jump_rec => //.
rewrite nto andTb.
rewrite -[X in _ <= _ + X](size_tuple (tetake (cfun ceswap v))).
by rewrite -size_noFT addnCA leq_addr.
Qed.
Lemma sorting_knuth_exchange m : knuth_exchange m \is sorting.
Proof. apply/forallP => x; apply: sorted_nfun_knuth_exchange. Qed.
(** Iterative version *)
Fixpoint eotake (A : Type) d n (s : seq A) :=
if d is d1.+1 then
if odd n then eotake d1 n./2 (otake s)
else eotake d1 n./2 (etake s)
else s.
Lemma eotake_mod (A : Type) d n (s : seq A) :
eotake d (n %% `2^ d) s = eotake d n s.
Proof.
elim: d n s => //= d IH n s; rewrite odd_mod ?(odd_e2 d.+1) //.
case: (boolP (odd n)) => [nO|nE]; last first.
rewrite -[in LHS](odd_double_half n) (negPf nE) add0n addnn.
by rewrite -!muln2 -muln_modl muln2 doubleK IH.
rewrite -[in LHS](odd_double_half n) nO add1n modnS.
rewrite addnn -!muln2 -muln_modl !muln2 ifN.
by rewrite -uphalfE uphalf_half odd_double doubleK IH.
apply/negP=> /dvdnP => [] [k H].
by move: (nO); rewrite -[n]odd_double_half nO addSn H -doubleMr odd_double.
Qed.
Lemma nth_eotake (A : Type) d n (s : seq A) a x :
nth a (eotake d n s) x = nth a s ((n %% `2^ d) + `2^ d * x).
Proof.
elim: d n s a x => /= [n s a x|d IH n s a x]; first by rewrite modn1 mul1n.
case: (boolP (odd n)) => [nO|nE]; rewrite addnn; last first.
rewrite IH nth_etake doubleD doubleMl.
by rewrite -muln2 muln_modl !muln2 -[in RHS](odd_double_half n) (negPf nE).
rewrite IH nth_otake doubleD -addSn doubleMl.
rewrite -muln2 muln_modl !muln2.
rewrite -[in RHS](odd_double_half n) nO add1n modnS ifN //.
apply/negP=> /dvdnP => [] [k H].
by move: (nO); rewrite -[n]odd_double_half nO addSn H -doubleMr odd_double.
Qed.
Lemma nth_eotake_div (A : Type) d (s : seq A) a n :
nth a (eotake d n s) (n %/ `2^ d) = nth a s n.
Proof. by rewrite nth_eotake mulnC addnC -divn_eq. Qed.
Lemma eq_size_eotake (A: Type) d n (s1 s2 : seq A) :
size s1 = size s2 -> size (eotake d n s1) = size (eotake d n s2).
Proof.
elim: d n s1 s2 => //= d IH n s1 s2 ss1Ess2.
case: odd; apply: IH; first by apply: eq_size_otake.
by apply: eq_size_etake.
Qed.
Lemma gtn_size_eotake (A : Type) k p i (s : seq A) :
i < `2^ p -> k < size (eotake p i s) -> i + `2^ p * k < size s.
Proof.
elim: p i k s => [[]// k s _|p IH i k s iLk kLs]; first by rewrite mul1n.
rewrite /= in kLs.
case: (boolP (odd _)) kLs => iO /IH;
rewrite ?(size_otake, size_etake) ltn_half_double -addnn -e2Sn =>
/(_ iLk) ikLs.
rewrite -(odd_double_half i) iO -addSn -doubleS.
rewrite e2Sn addnn -doubleMl -doubleD.
rewrite -(odd_double_half (size s)).
apply: leq_trans (leq_addl _ _).
by rewrite leq_double addSn.
move: ikLs.
rewrite uphalf_half -[X in i + _ < X](odd_double_half (size s)).
rewrite -[i as X in (X + _ < _)]odd_double_half (negPf iO) add0n.
rewrite e2Sn addnn -doubleMl -doubleD.
case: odd => /=; first by rewrite !ltnS leq_double.
by rewrite ltn_double.
Qed.
Lemma eotakeS (A : Type) (d n : nat) (s : seq A) :
eotake d.+1 n s =
if odd n
then eotake d n./2 (otake s)
else eotake d n./2 (etake s).
Proof. by []. Qed.
Lemma eotcat_take (A : Type) d n (s : seq A) : n < `2^ d ->
eotcat (eotake d.+1 n s) (eotake d.+1 (`2^ d + n) s) =
eotake d n s.
Proof.
move=> nL2d.
have IH0 d1 s1 : eotcat (eotake d1.+1 0 s1) (eotake d1.+1 (`2^ d1) s1) =
eotake d1 0 s1.
elim: d1 s1 => [/= s1|d1 IH s1]; first by rewrite eotcatK.
rewrite !(eotakeS d1.+1).
by rewrite [RHS]/= -[RHS]IH /= addnn odd_double doubleK.
have [m leMn] := ubnP n.
elim: m n d s leMn nL2d => [[]//|m IH n [|d] s nLm nLd].
by case: (n) nLd => //= _; apply: eotcatK.
rewrite !(eotakeS d.+1) [X in odd(X + _)]addnn oddD odd_double addFb [RHS]/=.
have -> : (`2^ d.+1 + n)./2 = `2^d + n./2.
by rewrite /= addnn halfD doubleK odd_double.
rewrite -(odd_double_half n) in nLm nLd.
case: (boolP (odd n)) nLm nLd; rewrite ?(addSn, add0n, ltnS) => nO nLm nLd.
apply: IH => //.
by rewrite (leq_ltn_trans _ nLm) // -addnn leq_addr.
by rewrite -ltn_double -[X in _ < X]addnn (leq_ltn_trans _ nLd).
case: (ltngtP 0 n) => // [n_gt0|<-]; last by rewrite addn0 IH0.
apply: IH => //.
case: (n) nO n_gt0 nLm => // [] [|n1] //= _ _ n1Lm.
by rewrite (leq_trans _ n1Lm) // -addnn addnS addSn !ltnS leq_addr.
by rewrite -ltn_double -[X in _ < X]addnn (leq_ltn_trans _ nLd).
Qed.
Lemma etake_eotake (A : Type) d n (s : seq A) : n < `2^ d ->
etake (eotake d n s) = eotake d.+1 n s.
Proof.
have IH0 d1 l1 : etake (eotake d1 0 l1) = eotake d1.+1 0 l1.
elim: d1 l1 => [//|d1 IH l1].
by rewrite !(eotakeS d1.+1) -[RHS]IH.
move=> nL2d.
have [m leMn] := ubnP n.
elim: m n d s leMn nL2d => [[]//|m IH n [|d] s nLm nLd].
by case: (n) nLd => //= _; apply: eotcatK.
case: (ltngtP 0 n) => // [n_gt0|<-]; last by rewrite IH0.
have n2Ld : n./2 < `2^ d.
rewrite -ltn_double -[X in _ < X]addnn (leq_ltn_trans _ nLd) //.
by rewrite -[X in _ <= X](odd_double_half n) leq_addl.
have n2Lm : n./2 < m.
case: (n) n_gt0 nLm => // [] [|m1] //= _.
rewrite -(odd_double_half m1.+2) /= doubleS addnS ltnS.
move => /(leq_ltn_trans _)->//.
by rewrite addnS ltnS -addnn addnA leq_addl.
by rewrite !(eotakeS d.+1) [LHS]/=; case: odd; apply: IH.
Qed.
Lemma otake_eotake (A : Type) d n (s : seq A) : n < `2^ d ->
otake (eotake d n s) = eotake d.+1 (`2^ d + n) s.
Proof.
have IH0 d1 s1 : otake (eotake d1 0 s1) = eotake d1.+1 (`2^ d1) s1.
elim: d1 s1 => [//=|d1 IH s1].
rewrite !(eotakeS d1.+1) [X in odd X]/= addnn odd_double.
by rewrite [X in X./2]addnn doubleK -[RHS]IH.
move=> nL2d.
have [m leMn] := ubnP n.
elim: m n d s leMn nL2d => [[]//|m IH n [|d] s nLm nLd].
by case: (n) nLd => //= _; apply: eotcatK.
case: (ltngtP 0 n) => // [n_gt0|<-]; last by rewrite addn0 IH0.
have n2Ld : n./2 < `2^ d.
rewrite -ltn_double -[X in _ < X]addnn (leq_ltn_trans _ nLd) //.
by rewrite -[X in _ <= X](odd_double_half n) leq_addl.
have n2Lm : n./2 < m.
case: (n) n_gt0 nLm => // [] [|m1] //= _.
rewrite -(odd_double_half m1.+2) /= doubleS addnS ltnS.
move => /(leq_ltn_trans _)->//.
by rewrite addnS ltnS -addnn addnA leq_addl.
have HE : (`2^ d.+1 + n)./2 = `2^ d + n./2.
by rewrite halfD odd_e2 /= addnn doubleK.
rewrite !(eotakeS d.+1) oddD odd_e2 HE.
rewrite -IH // [LHS]/=.
by case: odd => //=; rewrite IH.
Qed.
Lemma leq_size_eotake_e2n (A : Type) i p q (s : seq A) :
i <= q -> size s <= `2^ q -> size (eotake i p s) <= `2^ (q - i).
Proof.
elim: i p q s => [|i IH] p q s iLq Hs /=; first by rewrite subn0.
have q_gt0 : 0 < q by apply: leq_ltn_trans iLq.
case: odd.
apply: leq_trans (IH _ q.-1 _ _ _) _.
- by rewrite -ltnS prednK // (leq_ltn_trans _ iLq).
- rewrite size_otake -leq_double -!addnn -e2Sn addnn.
rewrite prednK // (leq_trans _ Hs) //.
by rewrite -[X in _ <= X]odd_double_half; case: odd.
by case: (q) q_gt0.
apply: leq_trans (IH _ q.-1 _ _ _) _.
- by rewrite -ltnS prednK // (leq_ltn_trans _ iLq).
- by rewrite size_etake leq_uphalf_e2n // prednK.
by case: (q) q_gt0.
Qed.
Lemma eotcat_nseq (A : Type) (a : A) n m :
m <= n <= m.+1 -> eotcat (nseq n a) (nseq m a) = nseq (n + m) a.
Proof.
elim: n m => [[]//|n IH [|m]]; first by case: (n).
rewrite addnS /= !ltnS => H.
by rewrite IH.
Qed.
Lemma sorted_eotake (p : nat) (s : seq bool) i :
i < `2^ p ->
[/\ sorted <=%O (eotake p.+1 i s),
sorted <=%O (eotake p.+1 (`2^ p + i) s) &
noF (eotake p.+1 (`2^p + i) s) <= noF (eotake p.+1 i s) <=
noF (eotake p.+1 (`2^p + i) s) + 1] ->
sorted <=%O (eotake p i s).
Proof.
move=> iL2p [/isorted_boolP[[a1 b1] E1 /isorted_boolP[[a2 b2] E2]]].
rewrite E1 E2 !noE addn1 => a2La1.
rewrite -eotcat_take // E1 E2.
have := size_etake (eotake p i s).
have := size_otake (eotake p i s).
rewrite etake_eotake // otake_eotake // E1 E2 uphalf_half => <-.
rewrite !size_cat !size_nseq.
elim: a1 {E1 E2}a2 a2La1 => [[|a2]//= _ Hs|a1 IH [|a2]].
- rewrite eotcat_nseq //.
by apply/isorted_boolP; exists (0, b1 + b2).
rewrite add0n in Hs.
by rewrite Hs; case: odd; rewrite ?add1n !leqnn ?andbT //=.
- case: (a1) => // _; case: (b1); case: (b2) => // b3 b4 Hs.
rewrite /= in Hs.
rewrite ![_ ++ _]/= eotcat_cons (@eotcat_nseq _ true b4.+1).
rewrite isorted_consF.
by apply/isorted_boolP; exists (0, (b4.+1 + b3).+1).
rewrite add1n add0n addnS in Hs.
by case: Hs=> ->; case: odd; rewrite ?add1n !leqnn ?andbT /=.
rewrite ![_ ++ _]/= !ltnS => HS1 HS2.
rewrite !addSn addnS in HS2.
rewrite [_ ++ nseq b2 _]/= eotcat_cons !isorted_consF.
apply: IH => //.
by case: HS2.
Qed.
Section IKnuthExchance.
Variables (d : disp_t) (A : orderType d).
Definition swap i j (s : seq A) :=
if s is a :: _ then
let s1 := take i s in
let s2 := drop i s in
let s3 := behead s2 in
let s4 := take (j - i).-1 s3 in
let s5 := drop (j - i).-1 s3 in
let v1 := head a s2 in
let v2 := head a s5 in
s1 ++ min v1 v2 :: s4 ++ max v1 v2 :: behead s5
else [::].
Fixpoint iter1_aux k n p i (s : seq A) :=
if k is k1.+1 then
if i + p < n then
iter1_aux k1 n p i.+1
(if odd (i %/ p) then s else swap i (i + p) s)
else s
else s.
Definition iter1 p (s : seq A) := iter1_aux (size s).+1 (size s) p 0 s.
Fixpoint iter2_aux k n p q i (s : seq A) :=
if k is k1.+1 then
if i + q < n then
iter2_aux k1 n p q i.+1
(if odd (i %/ p) then s else swap (i + p) (i + q) s)
else s
else s.
Definition iter2 p q (s : seq A) := iter2_aux (size s).+1 (size s) p q 0 s.
Fixpoint iter3_aux k p q (s : seq A) :=
if k is k1.+1 then
if q > p then iter3_aux k1 p q./2 (iter2 p q s) else s
else s.
Definition iter3 top p (s : seq A) := iter3_aux (size s).+1 p top s.
Fixpoint iknuth_exchange_aux k top p (s : seq A) :=
if k is k1.+1 then
if p > 0 then
let l1 := iter3 top p (iter1 p s) in
iknuth_exchange_aux k1 top p./2 l1
else s
else s.
Definition iknuth_exchange (s : seq A) : seq A :=
let top := `2^ ((up_log 2 (size s)).-1) in
iknuth_exchange_aux (size s) top top s.
End IKnuthExchance.
Compute iknuth_exchange [::8; 7; 6; 5; 4; 3; 2; 1].
Compute iknuth_exchange [::true; true; true; true; false; false; false; false].
Section IKnuthExchangeProof.
Variables (d : disp_t) (A : orderType d).
(******************************************************************************)
(* Proof for swap *)
(******************************************************************************)
Lemma perm_swap (s : seq A) i j : i < j < size s -> perm_eq (swap i j s) s.
Proof.
case: s => //= a s /andP[iLj jLs].
rewrite -[X in perm_eq _ X](cat_take_drop i).
rewrite perm_cat2l.
have := size_drop i (a :: s).
rewrite /= -[_ - _]prednK; last first.
by rewrite subn_gt0 (ltn_trans iLj).
case: drop => //= a1 l1.
rewrite prednK; last by rewrite subn_gt0 (ltn_trans iLj).
move=> sl1E.
rewrite -[X in perm_eq _ (_ :: X)](cat_take_drop (j - i).-1).
move: (sl1E) => sl1E1.
have jBiL : j - i < (size s).+1 - i.
rewrite -(ltn_add2r i) !subnK //; last by apply: ltnW.
by apply: (leq_trans (ltnW iLj) (ltnW _)).
rewrite -[l1](cat_take_drop (j - i).-1) size_cat size_take ifT in sl1E;
last by rewrite -ltnS sl1E1 prednK ?subn_gt0.
case: drop sl1E => [|b l2 _] /=.
rewrite addn0 prednK ?subn_gt0 // => jBiE.
by rewrite jBiE ltnn in jBiL.
case: (ltP a1 b) => _ //.
rewrite -!seq.cat_cons -!cat_rcons perm_cat2r /=.
set l4 := take _ _.
have <- := perm_rcons b (rcons l4 a1).
rewrite perm_sym.
have <- := perm_rcons a1 (rcons l4 b).
rewrite -[X in perm_eq X]cats0 !cat_rcons.
rewrite -[X in perm_eq _ X]cats0 !cat_rcons.
rewrite perm_cat2l.
by have <- := perm_rcons b [::a1].
Qed.
Lemma size_swap (s : seq A) i j : i < j < size s -> size (swap i j s) = size s.
Proof. by move=> jB; apply/perm_size/perm_swap. Qed.
Lemma nth_swap a i j (s : seq A) k :
i < j < size s -> nth a (swap i j s) k =
(if k == i then min (nth a s i) (nth a s j)
else if k == j then max (nth a s i) (nth a s j)
else nth a s k).
Proof.
case: s => [/andP[]|/= b s /andP[iLj jLs]]; first by case: j.
rewrite nth_cat size_take /= (ltn_trans iLj jLs).
case: (ltngtP k i) => [kLi|iLk|->]; first 2 last.
- rewrite subnn /=; congr min.
rewrite -nth0 nth_drop addn0.
by apply: set_nth_default; rewrite /= (ltn_trans iLj).
rewrite -nth0 nth_drop addn0 nth_behead nth_drop prednK ?subn_gt0 //.
by rewrite addnC subnK 1?ltnW //; apply: set_nth_default.
- by rewrite ?nth_take // ifN // neq_ltn (ltn_trans kLi).
rewrite -[k - i]prednK ?subn_gt0 //=.
rewrite nth_cat size_take size_behead size_drop /=.
rewrite !prednK ?subn_gt0 // subSn /=; last first.
by rewrite -ltnS (leq_trans iLj (ltnW _)).
rewrite leq_sub2r // -ltnS prednK ?subn_gt0 //.
rewrite -(ltn_add2r i) !subnK //; try by rewrite ltnW.
case: (ltngtP k j) => [kLj|jLk|->]; first 2 last.
- rewrite subnn /= -!nth0 !(nth_drop, nth_behead) !addn0.
rewrite prednK ?subn_gt0 // addnC subnK; last by rewrite ltnW.
congr max; apply: set_nth_default => //.
by rewrite (leq_trans iLj (ltnW _)).
- rewrite nth_take; last first.
rewrite -ltnS !prednK ?subn_gt0 //.
by rewrite -(ltn_add2r i) !subnK // ltnW.
- by rewrite nth_behead nth_drop prednK ?subn_gt0 // addnC subnK // ltnW.
rewrite -[_.-1 - _.-1]subSS !prednK ?subn_gt0 //.
rewrite subnBA 1?ltnW // subnK 1?ltnW // -[k - j]prednK ?subn_gt0 //=.
rewrite !(nth_behead, nth_drop) prednK ?subn_gt0 // -addSn prednK ?subn_gt0 //.
by rewrite addnCA addnA subnK 1?ltnW // addnC subnK 1?ltnW.
Qed.
(******************************************************************************)
(* Proof for iter1 *)
(******************************************************************************)
Lemma nth_iter1_aux k n p i s s1 (a : A) :
0 < p -> n = size s -> n = size s1 -> n <= k + i ->
(forall j,
nth a s1 j =
if odd (j %/ p) then
if (j < i + p) then max (nth a s (j - p)) (nth a s j)
else nth a s j
else
if (j + p < n) && (j < i) then min (nth a s j) (nth a s (j + p))
else nth a s j) ->
(forall j, j < n ->
nth a (iter1_aux k n p i s1) j =
if odd (j %/ p) then max (nth a s (j - p)) (nth a s j)
else
if j + p < n then min (nth a s j) (nth a s (j + p))
else nth a s j).
Proof.
move=> p_gt0 nEl nEl1.
elim: k i s1 nEl1 => [i s1 nEl1 nLi /= Hc j jLn|
/= k IH i s1 nEl1 nLi Hc j jLn /=].
have := Hc j.
rewrite (leq_trans jLn nLi) andbT.
suff -> : j < i + p by [].
by rewrite (leq_trans (leq_trans jLn nLi) (leq_addr _ _)).
case: (ltnP (i + p)) => [ipLn|nLip]; last first.
have := Hc j.
have [jpO|jpE] := boolP (odd _).
by rewrite ifT // (leq_trans jLn).
case: (ltnP (j + p)) => [jpLn|nLjp]//=.
by rewrite -(ltn_add2r p) (leq_trans jpLn).
have ipB : i < i + p < n.
by rewrite -ltn_subLR // subnn p_gt0.
rewrite IH //.
- by case: odd; rewrite // size_swap // -nEl1.
- by rewrite -addSnnS.
move=> j1.
case: (boolP (odd _)) => [ipO|ipE].
case: (boolP (odd _)) => [jpO|jpE].
have j1Dip : j1 != i + p.
rewrite -[odd _]negbK in jpO.
apply: contra jpO => /eqP->.
by rewrite -[X in _ + X]mul1n divnDMl // addn1 /= negbK.
by rewrite Hc jpO addSn ltnS [j1 <= _]leq_eqVlt (negPf j1Dip).
rewrite Hc (negPf jpE) /=.
rewrite ltnS [j1 <= _]leq_eqVlt; case: eqP =>> //= j1Ei.
by case/negP: jpE; rewrite j1Ei.
rewrite nth_swap -?nEl1 //.
case: eqP => [->|/eqP j1Di].
rewrite (negPf ipE) ltnS ipLn leqnn //=.
rewrite !Hc (negPf ipE) ipLn !ltnn /=.
by rewrite -[X in _ + X]mul1n divnDMl // addn1 /= ipE mul1n.
case: eqP => [->|/eqP j1Dip].
rewrite leqnn.
rewrite -[X in _ + X]mul1n divnDMl // addn1 /= ipE mul1n addnK.
rewrite !Hc (negPf ipE) ipLn !ltnn /=.
by rewrite -[X in _ + X]mul1n divnDMl // addn1 /= ipE mul1n.
case: (boolP (odd _)) => [j1pO|j1pE].
by rewrite Hc j1pO addSn ltnS [j1 <= _]leq_eqVlt (negPf j1Dip).
by rewrite Hc (negPf j1pE) ltnS [j1 <= _]leq_eqVlt (negPf j1Di).
Qed.
Lemma perm_iter1_aux k n p i (s : seq A) :
0 < p -> n = size s -> perm_eq (iter1_aux k n p i s) s.
Proof.
move=> p_gt0.
elim: k i s => //= k1 IH i s nE.
case: ltnP => // ipLn.
have ipB : i < i + p < n by rewrite -ltn_subLR // subnn p_gt0.
apply: perm_trans (IH _ _ _) _.
by case: odd => //=; rewrite size_swap // -nE.
by case: odd => //; apply: perm_swap; rewrite -nE.
Qed.
Lemma size_iter1_aux k n p i (s : seq A) :
0 < p -> n = size s -> size (iter1_aux k n p i s) = size s.
Proof. by move=> p_gt0 nE; apply/perm_size/perm_iter1_aux. Qed.
Lemma iter1_auxS k n p i (s : seq A) :
iter1_aux k.+1 n p i s =
if i + p < n then
iter1_aux k n p i.+1 (if odd (i %/ p) then s else swap i (i + p) s)
else s.
Proof. by []. Qed.
Lemma perm_iter1 p (s : seq A) : 0 < p -> perm_eq (iter1 p s) s.
Proof. by move=> p_gt0; apply: perm_iter1_aux. Qed.
Lemma size_iter1 p (s : seq A) : 0 < p -> size (iter1 p s) = size s.
Proof. by move=> p_gt0; apply/perm_size/perm_iter1. Qed.
Lemma nth_iter1 p s (a : A) j :
0 < p ->
nth a (iter1 p s) j =
if odd (j %/ p) then
if j < size s then max (nth a s (j - p)) (nth a s j)
else nth a s j
else
if j + p < size s then min (nth a s j) (nth a s (j + p))
else nth a s j.
Proof.
move=> p_gt0.
case: (ltnP j (size s)) => jLs; last first.
rewrite !nth_default ?minxx ?if_same ?size_iter1 //.
by rewrite (leq_trans _ (leq_addr _ _)).
apply: nth_iter1_aux; rewrite ?(addn0, add0n) // => j1.
rewrite ltn0 andbF.
case: (boolP (odd _)) => [j1pO|]//.
rewrite ifN // -leqNgt.
by rewrite -divn_gt0; case: (_ %/ _) j1pO.
Qed.
(******************************************************************************)
(* Proof for iter2 *)
(******************************************************************************)
Lemma iter2_auxS k n p q i (s : seq A) :
iter2_aux k.+1 n p q i (s : seq A) =
if i + q < n then
iter2_aux k n p q i.+1
(if odd (i %/ p) then s else swap (i + p) (i + q) s)
else s.
Proof. by []. Qed.
Lemma nth_iter2_aux k n p q i s s1 (a : A) :
0 < p -> 0 < q -> p %| q -> ~~ odd (q %/ p) ->
n = size s -> n = size s1 -> n <= k + i ->
(forall j,
nth a s1 j =
if odd (j %/ p) then
if (j < i + p) && (j + q < n + p)
then min (nth a s j) (nth a s (j + q - p))
else nth a s j
else
if (q <= j < i + q) then max (nth a s (j - q + p)) (nth a s j)
else nth a s j) ->
(forall j, j < n ->
nth a (iter2_aux k n p q i s1) j =
if odd (j %/ p) then
if (j + q < n + p) then
min (nth a s j) (nth a s (j + q - p))
else nth a s j
else
if (q <= j) then max (nth a s (j - q + p)) (nth a s j)
else nth a s j).
Proof.
move=> p_gt0 q_gt0 pDq pDqE nEl nEl1.
have pLq : p < q.
have : p <= q by rewrite dvdn_leq.
by case: ltngtP => // pE; case/negP: pDqE; rewrite pE divnn q_gt0.
elim: k i s1 nEl1 => [i s1 nEl1 nLi /= Hc j jLn|
/= k IH i s1 nEl1 nLi Hc j jLn /=].
have := Hc j.
rewrite (leq_trans (leq_trans jLn _) (leq_addr q i)) // andbT.
by rewrite (leq_trans (leq_trans jLn _) (leq_addr p i)) // andbT.
case: (ltnP (i + q)) => [iqLn|nLiq]; last first.
have := Hc j.
have [jpO|jpE]/= := boolP (odd _).
case: (ltnP (j + q)); rewrite !(andbT, andbF) // => jqLnp.
case: (ltnP j); rewrite // leqNgt.
by rewrite -(ltn_add2r q) (leq_trans jqLnp) // addnAC leq_add2r.
by rewrite (leq_trans jLn _) // andbT.
have iqB : i + p < i + q < n by rewrite ltn_add2l pLq iqLn.
rewrite IH //.
- by case: odd; rewrite // size_swap // -nEl1.
- by rewrite -addSnnS.
move=> j1.
case: (boolP (odd _)) => [ipO|ipE]/=.
have iqO : odd ((i + q) %/ p).
case/dvdnP: pDq pDqE => r ->.
by rewrite mulnK // divnDMl // oddD => /negPf->; rewrite addbF.
case: (boolP (odd _)) => [j1pO|j1pE]/=.
have j1Dip : j1 != i + p.
rewrite -[odd _]negbK in j1pO.
apply: contra j1pO => /eqP->.
by rewrite -[X in _ + X]mul1n divnDMl // addn1 /= negbK.
by rewrite Hc j1pO addSn /= ltnS [j1 <= _]leq_eqVlt (negPf j1Dip).
rewrite Hc (negPf j1pE) /=.
rewrite ltnS [j1 <= _]leq_eqVlt; case: eqP =>> //= j1Ei.
by case/negP: j1pE; rewrite j1Ei.
rewrite nth_swap -?nEl1 //.
have ipO : odd ((i + p) %/ p).
by rewrite -[X in _ + X]mul1n divnDMl // addn1 /=.
have iqE : ~~ odd ((i + q) %/ p).
case/dvdnP: pDq pDqE => r ->.
by rewrite mulnK // divnDMl // oddD => /negPf->; rewrite addbF.
case: eqP => [->|/eqP j1Di].
rewrite -[X in _ + X]mul1n divnDMl // addn1 /= ipE mul1n.
rewrite leqnn.
rewrite addnAC ltn_add2r iqLn /=.
by rewrite !Hc (negPf iqE) ipO !ltnn !andbF /= addnK.
case: eqP => [->|/eqP j1Dip].
rewrite (negPf iqE) leq_addl leqnn /= addnK.
by rewrite !Hc (negPf iqE) ipO !ltnn !leq_addl.
case: (boolP (odd _)) => [j1pO|j1pE].
by rewrite Hc j1pO addSn ltnS [j1 <= _]leq_eqVlt (negPf j1Di).
by rewrite Hc (negPf j1pE) ltnS [j1 <= _]leq_eqVlt (negPf j1Dip).
Qed.
Lemma perm_iter2_aux k n p q i (s : seq A) :
0 < p -> p < q -> n = size s -> perm_eq (iter2_aux k n p q i s) s.
Proof.
move=> p_gt0 pLq.
elim: k i s => //= k1 IH i s nE.
case: ltnP => // ipLn.
have ipB : i + p < i + q < n by rewrite ltn_add2l pLq.
apply: perm_trans (IH _ _ _) _.
by case: odd => //=; rewrite size_swap // -nE.
by case: odd => //; apply: perm_swap; rewrite -nE.
Qed.
Lemma size_iter2_aux k n p q i (s : seq A) :
0 < p -> p < q -> n = size s -> size (iter2_aux k n p q i s) = size s.
Proof. by move=> p_gt0 qLp nE; apply/perm_size/perm_iter2_aux. Qed.
Lemma perm_iter2 p q (s : seq A) : 0 < p -> p < q -> perm_eq (iter2 p q s) s.
Proof. by move=> p_gt0 pLq; apply: perm_iter2_aux. Qed.
Lemma size_iter2 p q (s : seq A) :
0 < p -> p < q -> size (iter2 p q s) = size s.
Proof. by move=> p_gt0 pLq; apply/perm_size/perm_iter2. Qed.
Lemma nth_iter2 p q s (a : A) j :
0 < p -> 0 < q -> p %| q -> ~~ odd (q %/ p) ->
nth a (iter2 p q s) j =
if odd (j %/ p) then
if (j + q < size s + p) then
min (nth a s j) (nth a s (j + q - p))
else nth a s j
else
if (q <= j < size s) then max (nth a s (j - q + p)) (nth a s j)
else nth a s j.
Proof.
move=> p_gt0 q_gt0 pDq qpE.
have pLq : p < q.
have : p <= q by rewrite dvdn_leq.
by case: ltngtP => // pE; case/negP: qpE; rewrite pE divnn q_gt0.
case: (ltnP j (size s)) => jLs; last first.
rewrite andbF !nth_default ?(maxxx, minxx) ?if_same ?size_iter2 //.
by rewrite -addnBA ?(leq_trans jLs (leq_addr _ _)) // ltnW.
rewrite andbT.
apply: nth_iter2_aux; rewrite ?(addn0, add0n) // => j1.
case: (boolP (odd _)) => [j1pO|j1pE]//.
have pLj1 : p <= j1 by rewrite -divn_gt0 //; case: (_ %/ _) j1pO.
by rewrite ifN // negb_and; case: leqP pLj1.
by rewrite ifN // negb_and; case: leqP.
Qed.
(******************************************************************************)
(* Proof for iter3 *)
(******************************************************************************)
Lemma iter3_auxS k p q (s : seq A) :
iter3_aux k.+1 p q (s : seq A) =
if q > p then iter3_aux k p q./2 (iter2 p q s) else s.
Proof. by []. Qed.
Lemma perm_iter3_aux k p q (s : seq A) : 0 < p -> perm_eq (iter3_aux k p q s) s.
Proof.
move=> p_gt0.
elim: k q s => //= k IH q s.
case: leqP => // H.
apply: perm_trans.
apply: IH.
by apply: perm_iter2.
Qed.
Lemma size_iter3_aux k p q (s : seq A) :
0 < p -> size (iter3_aux k p q s) = size s.
Proof. by move=> p_gt; apply/perm_size/perm_iter3_aux. Qed.
Lemma perm_iter3 p q (s : seq A) : 0 < q -> perm_eq (iter3 p q s) s.
Proof. by apply: perm_iter3_aux. Qed.
Lemma size_iter3 p q (s : seq A) : 0 < q -> size (iter3 p q s) = size s.
Proof. by move=> q_gt; apply/perm_size/perm_iter3. Qed.
(******************************************************************************)
(* Proof for iknuth_exchange *)
(******************************************************************************)
Lemma perm_iknuth_exchange_aux k p q (s : seq A) :
perm_eq (iknuth_exchange_aux k p q s) s.
Proof.
elim: k p q s => //= k IH p q s.
case: leqP => // q_gt0.
apply: perm_trans; first by apply: IH.
apply: perm_trans; first by apply: perm_iter3.
by apply: perm_iter1.
Qed.
Lemma size_iknuth_exchange_aux k p q (s : seq A) :
size (iknuth_exchange_aux k p q s) = size s.
Proof. by apply/perm_size/perm_iknuth_exchange_aux. Qed.
Lemma perm_iknuth_exchange (s : seq A) : perm_eq (iknuth_exchange s) s.
Proof. by apply: perm_iknuth_exchange_aux. Qed.
Lemma size_iknuth_exchange (s : seq A) : size (iknuth_exchange s) = size s.
Proof. by apply/perm_size/perm_iknuth_exchange_aux. Qed.
End IKnuthExchangeProof.
Lemma sorted_iter1 (p : nat) (s : seq bool) i :
i < `2^ p ->
let s1 := iter1 (`2^ p) s in
sorted <=%O (eotake p.+1 i s) ->
sorted <=%O (eotake p.+1 (`2^ p + i) s)
->
[/\
sorted <=%O (eotake p.+1 i s1),
sorted <=%O (eotake p.+1 (`2^p + i) s1) &
noF (eotake p.+1 (`2^p + i) s1) <= noF (eotake p.+1 i s1)].
Proof.
move=> iL2p s1.
set s2 := eotake _ _ _; set s3 := eotake _ _ _.
pose d : nat := (size s2 != size s3).
move=> /isorted_boolP[[a1 b1] s2E] /isorted_boolP[[a2 b2] s3E].
pose sl := eotake p i s.
have ss2E : size s2 = uphalf (size sl) by rewrite -size_etake etake_eotake.
have ss3E : size s3 = (size sl)./2 by rewrite -size_otake otake_eotake.
have dE : d = odd (size sl).
rewrite /d ss2E ss3E uphalf_half; case odd; rewrite /= ?eqxx ?add1n //.
by case: ltngtP (leqnn (size sl)./2.+1).
rewrite uphalf_half -dE s2E size_cat !size_nseq in ss2E.
rewrite s3E size_cat !size_nseq in ss3E.
have a1b1E : a1 + b1 = a2 + b2 + d by rewrite ss2E addnC ss3E.
pose s4 := nseq (maxn a1 a2) false ++ nseq (minn b1 (d + b2)) true.
have s4S : size s4 = size (eotake p.+1 i s1).
rewrite size_cat !size_nseq.
rewrite (eq_size_eotake _ _ (size_iter1 s (e2n_gt0 _))).
rewrite -/s2 s2E size_cat !size_nseq.
lia.
pose s5 := nseq (minn a1 a2) false ++ nseq (maxn b1 (d + b2) - d) true.
have s5S : size s5 = size (eotake p.+1 (`2^ p + i) s1).
rewrite size_cat !size_nseq.
rewrite (eq_size_eotake _ _ (size_iter1 s (e2n_gt0 _))).
rewrite -/s3 s3E size_cat !size_nseq.
lia.
have <- : s4 = eotake p.+1 i s1.
apply: (@eq_from_nth _ true) => // k kLs.
rewrite !nth_cat !nth_nseq if_same.
rewrite nth_eotake nth_iter1 ?e2n_gt0 //.
rewrite -nth_eotake -/s2 !modn_small; last first.
by rewrite (leq_trans iL2p) // leq_addr.
rewrite [_ + `2^ _]addnC addnA.
rewrite -[_ + i](modn_small (_ : _ < `2^ p.+1)); last first.
by rewrite e2Sn ltn_add2l.
rewrite -nth_eotake -/s3.
rewrite [X in (i + X * _) %/ _]e2Sn addnn -muln2 -mulnA mulnC.
rewrite divnDMl ?e2n_gt0 // oddD mul2n odd_double addbF.
rewrite divn_small //= modn_small ?ltn_add2l //.
rewrite s2E s3E !nth_cat !nth_nseq !size_nseq !if_same.
case: (ltnP a1 a2) => [a1La2|a2La1].
case: (ltnP k a1) => [a1Lk|kLa1].
rewrite !(leq_trans a1Lk (ltnW _)) //=; last first.
by rewrite minxx if_same.
case: (ltnP k a2) => [a2Lk|kLa2].
suff /gtn_size_eotake-> : k < size (eotake p.+1 (`2^ p + i) s).
- by rewrite minbF.
- by rewrite ltn_add2l.
have : k < size s5.
rewrite size_cat !size_nseq.
have -> : minn a1 a2 = a1 by lia.
have -> : maxn b1 (d + b2) = b1 by lia.
have -> : a1 + (b1 - d) = a2 + b2 by lia.
by apply: leq_trans (leq_addr _ _).
rewrite s5S.
by rewrite (eq_size_eotake _ _ (size_iter1 _ _)) // e2n_gt0.
by rewrite !if_same.
case: (ltnP k a2) => [a2Lk|kLa2].
by rewrite !(leq_trans a2Lk _) // minxx if_same.
by case: (ltnP k a1) => [a1Lk|kLa1]; rewrite if_same.
have <- : nseq (minn a1 a2) false ++ nseq (maxn b1 (d + b2) - d) true =
eotake p.+1 (`2^ p + i) s1.
apply: (@eq_from_nth _ true) => [|k].
rewrite size_cat !size_nseq.
rewrite (eq_size_eotake _ _ (size_iter1 s (e2n_gt0 _))).
rewrite -/s3 s3E size_cat !size_nseq.
lia.
rewrite nth_cat !nth_nseq !size_cat !size_nseq if_same.
rewrite nth_eotake nth_iter1 ?e2n_gt0 //.
rewrite -nth_eotake -/s2 !modn_small; last first.
by rewrite e2Sn ltn_add2l.
rewrite [_ + `2^ _]addnC addnA.
rewrite -[X in X - `2^ _]addnA [X in X - `2^ _]addnC addnK.
rewrite -[in i + _ * k](modn_small (_ : i < `2^ p.+1)); last first.
by rewrite (leq_trans iL2p (leq_addr _ _)).
rewrite -nth_eotake -/s2 -/s3.
rewrite [X in (_ + X * _) %/ _]e2Sn addnn -muln2 -mulnA mulnC.
rewrite divnDMl ?e2n_gt0 // oddD mul2n odd_double addbF.
rewrite -[X in X + i]mul1n [1 * _ + _]addnC divnDMl ?e2n_gt0 //.
rewrite divn_small //= mul1n.
rewrite s2E s3E !nth_cat !nth_nseq !size_nseq !if_same.
case: (ltnP a1 a2) => [a1La2|a2La1].
have -> : maxn b1 (d + b2) = b1 by lia.
case: (ltnP k a1) => [a1Lk|kLa1].
rewrite !(leq_trans a1Lk _) //=; last first.
- by apply: (leq_addr _ _).
- by apply: ltnW.
by rewrite maxxx if_same.
case: (ltnP k a2) => [a2Lk|kLa2].
rewrite ifT // -e2Sn [i + _]addnC.
suff /gtn_size_eotake-> : k < size (eotake p.+1 (`2^ p + i) s) => //.
by rewrite ltn_add2l.
have : k < size s5.
rewrite size_cat !size_nseq.
have -> : minn a1 a2 = a1 by lia.
have -> : maxn b1 (d + b2) = b1 by lia.
have -> : a1 + (b1 - d) = a2 + b2 by lia.
by apply: leq_trans (leq_addr _ _).
rewrite s5S.
by rewrite (eq_size_eotake _ _ (size_iter1 _ _)) // e2n_gt0.
by rewrite !if_same.
have -> : maxn b1 (d + b2) = d + b2 by lia.
case: (ltnP k a2) => [a2Lk|kLa2] _.
by rewrite !(leq_trans a2Lk _) // maxxx if_same.
by case: (ltnP k a1) => [a1Lk|kLa1]; rewrite if_same.
split.
- by apply/isorted_boolP; exists (maxn a1 a2, minn b1 (d + b2)).
- by apply/isorted_boolP; exists (minn a1 a2, maxn b1 (d + b2) - d).
by rewrite !noE; case: (ltnP a1 a2) => // ?; rewrite ltnW.
Qed.
Lemma sorted_iter2 (p : nat) q (s : seq bool) i :
i < `2^ p -> p < q ->
let s1 := iter2 (`2^ p) (`2^ q) s in
[/\
sorted <=%O (eotake p.+1 i s),
sorted <=%O (eotake p.+1 (`2^ p + i) s) &
noF (eotake p.+1 (`2^p + i) s) <= noF (eotake p.+1 i s) <=
noF (eotake p.+1 (`2^p + i) s) + `2^ (q - p)]