-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeneration_utils.py
566 lines (454 loc) · 23.8 KB
/
generation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# coding=utf-8
import os
import torch
import torch.nn.functional as F
from collections import defaultdict
from tokenization_t5 import EncDecTokenizer
class BeamHypotheses(object):
def __init__(self, num_beams, max_length, length_penalty, early_stopping, tokenizer=None):
"""
Initialize n-best list of hypotheses.
"""
self.max_length = max_length - 1 # ignoring bos_token
self.length_penalty = length_penalty
self.early_stopping = early_stopping
self.num_beams = num_beams
self.length_fact = []
self.beams = []
self.worst_score = 1e9
self.raw_worst_score = 1e9
self.tokenizer = tokenizer
def __len__(self):
"""
Number of hypotheses in the list.
"""
return len(self.beams)
def add(self, hyp, sum_logprobs):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / len(hyp) ** self.length_penalty
if len(self) < self.num_beams or score > self.worst_score:
self.beams.append((score, hyp))
self.length_fact.append(len(hyp) ** self.length_penalty)
if len(self) > self.num_beams:
sorted_scores = sorted([(s, idx, _) for idx, (s, _) in enumerate(self.beams)])
del self.beams[sorted_scores[0][1]]
self.worst_score = sorted_scores[1][0]
self.raw_worst_score = self.worst_score * (len(sorted_scores[1][2]) ** self.length_penalty)
else:
self.worst_score = min(score, self.worst_score)
self.raw_worst_score = sum_logprobs
def is_done(self, best_sum_logprobs, cur_len):
"""
If there are enough hypotheses and that none of the hypotheses being generated
can become better than the worst one in the heap, then we are done with this sentence.
"""
if len(self) < self.num_beams:
return False
elif self.early_stopping:
return True
else:
cur_score = best_sum_logprobs / cur_len ** self.length_penalty
ret = self.worst_score >= cur_score
return ret
def construct_antonym_dict(args):
if args.rule_path is None:
return None
with open(os.path.join(args.rule_path, './antonym/antonym.txt'), 'r') as f:
data = f.read().split("\n")
data = [eval(item) for item in data if item]
antonym_dict = defaultdict(list)
for first, second in data:
antonym_dict[first].append(second)
antonym_dict[second].append(first)
return antonym_dict
def calc_banned_antonym_words_ids(input_tokens, tokenizer, antonym_dict):
if antonym_dict is None:
return []
antonym_words = [set()] * len(input_tokens)
# only consider tokens occurring in current sentence
for idx, tokens in enumerate(input_tokens):
for word in tokenizer.convert_ids_to_tokens(reversed(tokens.tolist())):
if word == '<sep>':
break
antonym_words[idx].update(tokenizer.convert_tokens_to_ids(antonym_dict[word]))
return [list(tokens) for tokens in antonym_words]
def calc_banned_ngram_tokens(prev_input_ids, num_hypos: int, no_repeat_ngram_size: int, tokenizer: EncDecTokenizer) -> None:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_words = prev_input_ids[idx]
generated_ngram = generated_ngrams[idx]
for ngram in zip(*[gen_words[i:] for i in range(no_repeat_ngram_size)]):
ngram = tuple(ngram)
generated_ngram[ngram] = generated_ngram.get(ngram, set()) | set([ngram])
def _get_generated_ngrams(hypo_idx):
# Before decoding the next token, prevent decoding of ngrams that have already appeared
cur_len = len(prev_input_ids[hypo_idx])
generated_ngram_idx = []
for prefix_len in range(no_repeat_ngram_size):
ngram_words = tuple(prev_input_ids[hypo_idx][cur_len-prefix_len:])
generated_ngram_words = generated_ngrams[hypo_idx].get(ngram_words, [])
generated_ngram_idx += tokenizer.convert_tokens_to_ids(generated_ngram_words)
return generated_ngram_idx
banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
return banned_tokens
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-10000):
# This function has been mostly taken from huggingface conversational ai code at
# https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
batch_size = logits.size()[0]
if top_p > 0.0:
# logits : (batch_size, vocab_size)
logits=logits.view(batch_size, -1).contiguous()
# logits : (batch_size, vocab_size)
for logit in logits:
# logit: (vocab_size)
sorted_logits, sorted_indices = torch.sort(logit, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logit[indices_to_remove] = filter_value
logits=logits.view(batch_size, -1).contiguous()
return logits
def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids):
banned_tokens = []
def _tokens_match(prev_tokens, tokens):
if len(tokens) == 0:
# if bad word tokens is just one token always ban it
return True
if len(tokens) > len(prev_input_ids):
# if bad word tokens are longer then prev input_ids they can't be equal
return False
if prev_tokens[-len(tokens) :] == tokens:
# if tokens match
return True
else:
return False
for prev_input_ids_slice in prev_input_ids:
banned_tokens_slice = []
for banned_token_seq in bad_words_ids:
assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format(
bad_words_ids
)
if _tokens_match(prev_input_ids_slice.tolist(), banned_token_seq[:-1]) is False:
# if tokens do not match continue
continue
banned_tokens_slice.append(banned_token_seq[-1])
banned_tokens.append(banned_tokens_slice)
return banned_tokens
def enforce_repetition_penalty_(tokenizer, lprobs, batch_size, num_beams, prev_output_tokens, repetition_penalty):
"""repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """
for i in range(batch_size * num_beams):
for previous_token in set(prev_output_tokens[i].tolist()):
if previous_token != tokenizer.eos_id:
# if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if lprobs[i, previous_token] < 0:
lprobs[i, previous_token] *= repetition_penalty
else:
lprobs[i, previous_token] /= repetition_penalty
def postprocess_next_token_scores(
tokenizer: EncDecTokenizer,
scores,
input_ids,
no_repeat_ngram_size,
bad_words_ids,
cur_len,
min_length,
max_length,
eos_token_id,
repetition_penalty,
batch_size,
num_beams,
antonym_dict,
):
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
if repetition_penalty != 1.0:
enforce_repetition_penalty_(
tokenizer, scores, batch_size, num_beams, input_ids, repetition_penalty,
)
# set eos token prob to zero if min_length is not reached
if eos_token_id is not None and cur_len < min_length:
scores[:, eos_token_id] = -10000
if no_repeat_ngram_size > 0:
# calculate a list of banned tokens to prevent repetitively generating the same ngrams
num_batch_hypotheses = batch_size * num_beams
# from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
banned_batch_tokens = calc_banned_ngram_tokens(input_ids, num_batch_hypotheses, no_repeat_ngram_size, tokenizer=tokenizer)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -10000
if bad_words_ids is not None:
# calculate a list of banned tokens according to bad words
banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)
for i, banned_tokens in enumerate(banned_tokens):
scores[i, banned_tokens] = -10000
# add antonym banned list
banned_tokens = calc_banned_antonym_words_ids(input_ids, tokenizer, antonym_dict)
for i, banned_tokens in enumerate(banned_tokens):
scores[i, banned_tokens] = -10000
scores[:, 0] = -50000
return scores
def generate_no_beam(model_batch, full_context, model, tokenizer: EncDecTokenizer, args, device):
batch_size = args.batch_size
target_length = args.max_generation_length
dec_init_length = 1 # +1 for s_0
enc_input_ids = model_batch['enc_input_ids']
enc_attention_mask = model_batch['enc_attention_mask']
enc_outputs = model(
enc_input_ids=enc_input_ids,
enc_attention_mask=enc_attention_mask,
only_encoder=True
)
enc_hidden_states = enc_outputs["encoder_last_hidden_state"]
# for generating responses
# we only use the <go> token, so truncate other tokens
dec_input_ids = model_batch['dec_input_ids'][..., :dec_init_length]
dec_attention_mask = model_batch['dec_attention_mask'][..., :dec_init_length, :dec_init_length]
# we use past_key_values, so only the current token mask is needed
cross_attention_mask = model_batch['cross_attention_mask'][..., :dec_init_length, :]
unfinished_sents = enc_input_ids.new(enc_input_ids.size(0)).fill_(1)
output_ids = enc_input_ids.new_zeros([enc_input_ids.size(0), 0]) # not include the prompt
prob_idx = torch.arange(batch_size)
past_key_values = None
gen_len = 0
# construct antonym dict
antonym_dict = None
while gen_len < target_length:
if unfinished_sents.max() == 0:
tokens_to_add = tokenizer.eos_id * (1 - unfinished_sents)
output_ids = torch.cat([output_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
else:
dec_outputs = model(
dec_input_ids=dec_input_ids,
dec_attention_mask=dec_attention_mask,
cross_attention_mask=cross_attention_mask,
enc_hidden_states=enc_hidden_states,
past_key_values=past_key_values,
)
past_key_values = dec_outputs['past_key_values']
lm_logits = dec_outputs["lm_logits"]
logits = lm_logits[:, -1, :] / args.temperature
prev_output_tokens = torch.cat([full_context, output_ids], dim=-1)
logits = postprocess_next_token_scores(
tokenizer=tokenizer,
scores=logits,
input_ids=prev_output_tokens,
no_repeat_ngram_size=args.no_repeat_ngram_size,
bad_words_ids=[[0]],
cur_len=gen_len,
min_length=args.min_generation_length,
max_length=args.max_generation_length,
eos_token_id=tokenizer.eos_id,
repetition_penalty=args.repetition_penalty,
batch_size=batch_size,
num_beams=1,
antonym_dict=antonym_dict
)
if args.sampling:
logits = top_k_logits(logits, top_k=args.top_k, top_p=args.top_p)
probs = F.softmax(logits.float(), dim=-1)
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_token = torch.argmax(logits, -1)
tokens_to_add = next_token * unfinished_sents + tokenizer.pad_id * (1 - unfinished_sents)
dec_input_ids = tokens_to_add.unsqueeze(-1)
output_ids = torch.cat([output_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
# let the current token attend to all previous tokens
dec_attention_mask = torch.cat([dec_attention_mask[:, :, -1:, :], dec_attention_mask[:, :, -1:, -1:]], dim=-1)
cross_attention_mask = cross_attention_mask[:, :, -1:, :]
gen_len += 1
unfinished_sents.mul_(tokens_to_add.ne(tokenizer.eos_id).long())
output_ids = output_ids.cpu().tolist()
generation_token_ids_list = []
generation_str_list = []
for e in output_ids:
generation_token_ids = e[:e.index(tokenizer.eos_id)] if tokenizer.eos_id in e else e
generation_token_ids_list.append(generation_token_ids)
generation_str_list.append(tokenizer.decode(generation_token_ids))
return generation_str_list, generation_token_ids_list
def generate_beam(model_batch, full_context, model, tokenizer: EncDecTokenizer, args, device):
'''
Since the context in model batch is truncated, we need full_context to store the tokens in the entire context.
'''
batch_size = args.batch_size
num_beams = args.num_beams
target_length = args.max_generation_length
do_sample = args.sampling and (args.top_p > 0 or args.top_k > 0)
vocab_size = tokenizer.vocab_size
enc_input_ids = model_batch['enc_input_ids']
enc_attention_mask = model_batch['enc_attention_mask']
enc_input_length = enc_input_ids.size(-1)
enc_input_ids = enc_input_ids.unsqueeze(1).expand(batch_size, num_beams, enc_input_length)
enc_attention_mask = enc_attention_mask.unsqueeze(1).expand(batch_size, num_beams, 1, enc_input_length, enc_input_length)
enc_input_ids = enc_input_ids.contiguous().view(batch_size * num_beams, enc_input_length)
enc_attention_mask = enc_attention_mask.contiguous().view(batch_size * num_beams, 1, enc_input_length, enc_input_length)
full_context = full_context.unsqueeze(1).expand(batch_size, num_beams, full_context.size(-1))
full_context = full_context.contiguous().view(batch_size * num_beams, full_context.size(-1))
enc_outputs = model(
enc_input_ids=enc_input_ids,
enc_attention_mask=enc_attention_mask,
only_encoder=True
)
enc_hidden_states = enc_outputs["encoder_last_hidden_state"]
dec_init_length = 1 # 1 for s_0
# for generating responses
dec_input_ids = model_batch['dec_input_ids'][..., :dec_init_length]
dec_attention_mask = model_batch['dec_attention_mask'][..., :dec_init_length, :dec_init_length]
# we use past_key_values, so only the current token mask is needed
cross_attention_mask = model_batch['cross_attention_mask'][..., :dec_init_length, :]
dec_input_ids = dec_input_ids.unsqueeze(1).expand(batch_size, num_beams, dec_init_length)
dec_attention_mask = dec_attention_mask.unsqueeze(1).expand(batch_size, num_beams, 1, dec_init_length, dec_init_length)
cross_attention_mask = cross_attention_mask.unsqueeze(1).expand(batch_size, num_beams, 1, dec_init_length, enc_input_length)
dec_input_ids = dec_input_ids.contiguous().view(batch_size * num_beams, dec_init_length)
dec_attention_mask = dec_attention_mask.contiguous().view(batch_size * num_beams, 1, dec_init_length, dec_init_length)
cross_attention_mask = cross_attention_mask.contiguous().view(batch_size * num_beams, 1, dec_init_length, enc_input_length)
done = [False for _ in range(batch_size)]
output_ids = enc_input_ids.new_zeros([enc_input_ids.size(0), 0]) # not include the prompt
past_key_values = None
gen_len = 0
# construct antonym dict
antonym_dict = None
# generated hypotheses
generated_hyps = [
BeamHypotheses(num_beams, target_length, args.length_penalty, early_stopping=args.early_stopping, tokenizer=tokenizer)
for _ in range(batch_size)
]
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=dec_input_ids.device)
beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,)
while gen_len < target_length:
dec_outputs = model(
dec_input_ids=dec_input_ids,
dec_attention_mask=dec_attention_mask,
cross_attention_mask=cross_attention_mask,
enc_hidden_states=enc_hidden_states,
past_key_values=past_key_values,
)
past_key_values = dec_outputs['past_key_values']
lm_logits = dec_outputs["lm_logits"]
logits = lm_logits[:, -1, :] / args.temperature
scores = F.log_softmax(logits, dim=-1)
prev_output_tokens = torch.cat([full_context, output_ids], dim=-1)
scores = postprocess_next_token_scores(
tokenizer=tokenizer,
scores=scores,
input_ids=prev_output_tokens,
no_repeat_ngram_size=args.no_repeat_ngram_size,
bad_words_ids=None,
cur_len=gen_len,
min_length=args.min_generation_length,
max_length=args.max_generation_length,
eos_token_id=tokenizer.eos_id,
repetition_penalty=args.repetition_penalty,
batch_size=batch_size,
num_beams=num_beams,
antonym_dict=antonym_dict
)
if do_sample:
_scores = scores + beam_scores[:, None].expand_as(scores)
if args.temperature != 1.0:
_scores = _scores / args.temperature
_scores = top_k_logits(_scores, top_k=args.top_k, top_p=args.top_p)
_scores = _scores.contiguous().view(batch_size, num_beams * vocab_size)
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search)
probs = F.softmax(_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=2 * num_beams) # (batch_size, num_beams * 2)
# Compute next scores
next_scores = torch.gather(_scores, -1, next_tokens) # (batch_size, num_beams * 2)
# sort the sampled vector to make sure that the first num_beams samples are the best
next_scores, next_scores_indices = torch.sort(next_scores, descending=True, dim=1)
next_tokens = torch.gather(next_tokens, -1, next_scores_indices) # (batch_size, num_beams * 2)
else:
next_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size)
# re-organize to group the beam together (we are keeping top hypothesis accross beams)
next_scores = next_scores.view(
batch_size, num_beams * vocab_size
) # (batch_size, num_beams * vocab_size)
next_scores, next_tokens = torch.topk(next_scores, 2 * num_beams, dim=1, largest=True, sorted=True)
assert next_scores.size() == next_tokens.size() == (batch_size, 2 * num_beams)
# next batch beam content
next_batch_beam = []
for batch_idx in range(batch_size):
# if we are done with this sentence, add a pad token
if done[batch_idx]:
assert (
len(generated_hyps[batch_idx]) >= num_beams
), "Batch can only be done if at least {} beams have been generated".format(num_beams)
next_batch_beam.extend([(0, tokenizer.pad_id, 0)] * num_beams) # pad the batch
continue
# next sentence beam content, this will get added to next_batch_beam
next_sent_beam = []
# next tokens for this sentence
for beam_token_rank, (beam_token_id, beam_token_score) in enumerate(
zip(next_tokens[batch_idx], next_scores[batch_idx])
):
# get beam and token IDs
beam_id = beam_token_id // vocab_size
token_id = beam_token_id % vocab_size
effective_beam_id = batch_idx * num_beams + beam_id
# add to generated hypotheses if end of sentence
if token_id.item() == tokenizer.eos_id:
# if beam_token does not belong to top num_beams tokens, it should not be added
is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams
if is_beam_token_worse_than_top_num_beams:
continue
generated_hyps[batch_idx].add(
output_ids[effective_beam_id].clone(), beam_token_score.item(),
)
else:
# add next predicted token since it is not eos_token
next_sent_beam.append((beam_token_score, token_id, effective_beam_id))
# once the beam for next step is full, don't add more tokens to it.
if len(next_sent_beam) == num_beams:
break
# Check if we are done so that we can save a pad step if all(done)
done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done(
next_scores[batch_idx].max().item(), gen_len
)
# update next beam content
assert len(next_sent_beam) == num_beams, "Beam should always be full"
next_batch_beam.extend(next_sent_beam)
assert len(next_batch_beam) == num_beams * (batch_idx + 1), "We should have added num_beams each step"
# stop when we are done with each sentence
if all(done):
break
# sanity check / prepare next batch
assert len(next_batch_beam) == batch_size * num_beams
beam_scores = torch.tensor([x[0] for x in next_batch_beam], device=dec_input_ids.device)
beam_tokens = torch.tensor([x[1] for x in next_batch_beam], device=dec_input_ids.device)
beam_idx = torch.tensor([x[2] for x in next_batch_beam], device=dec_input_ids.device)
# re-order batch and update current length
output_ids = output_ids[beam_idx, :]
output_ids = torch.cat([output_ids, beam_tokens.unsqueeze(1)], dim=-1)
dec_input_ids = beam_tokens.unsqueeze(1)
dec_attention_mask = torch.cat([dec_attention_mask[:, :, -1:, :], dec_attention_mask[:, :, -1:, -1:]], dim=-1)
cross_attention_mask = cross_attention_mask[:, :, -1:, :]
# past_key_values = num_layer * 2 * (2, beam_size, 32, prefix_len, 64) first 2: self/cross attention, second 2: key/value
past_key_values = [[torch.index_select(layer_past_type, 1, beam_idx) for layer_past_type in layer_past] for layer_past in past_key_values]
gen_len += 1
# finalize all open beam hypotheses and add to generated hypotheses
for batch_idx in range(batch_size):
if done[batch_idx]:
continue
# need to add best num_beams hypotheses to generated hyps
for beam_id in range(num_beams):
effective_beam_id = batch_idx * num_beams + beam_id
final_score = beam_scores[effective_beam_id].item()
final_tokens = output_ids[effective_beam_id]
generated_hyps[batch_idx].add(final_tokens, final_score)
best = []
best_ids = []
# retrieve best hypotheses
for i, hypotheses in enumerate(generated_hyps):
sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0])
best_hyp = sorted_hyps.pop()[1]
best.append(tokenizer.decode(best_hyp.cpu().tolist()))
best_ids.append(best_hyp.cpu().tolist())
return best, best_ids