-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bert_340m_distributed.sh
79 lines (67 loc) · 1.71 KB
/
train_bert_340m_distributed.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/bin/bash
# Runs the "340M" parameter model (Bert - Large)
export CUDA_DEVICE_MAX_CONNECTIONS=1
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NUM_NODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NUM_NODES))
CHECKPOINT_PATH=$1 #<Specify path>
TENSORBOARD_LOGS_PATH=$2 #<Specify path>
VOCAB_FILE=$3 #<Specify path to file>/bert-vocab.json
DATA_PATH=$4 #<Specify path and file prefix>_text_document
DISTRIBUTED_ARGS=(
--nproc_per_node $GPUS_PER_NODE
--nnodes $NUM_NODES
--master_addr $MASTER_ADDR
--master_port $MASTER_PORT
)
BERT_MODEL_ARGS=(
--num-layers 24
--hidden-size 1024
--num-attention-heads 16
--seq-length 512
--max-position-embeddings 512
--attention-backend auto # Can use (flash/fused/unfused/local)
)
TRAINING_ARGS=(
--micro-batch-size 4
--global-batch-size 32
--train-iters 1000000
--weight-decay 1e-2
--clip-grad 1.0
--fp16
--lr 0.0001
--lr-decay-iters 990000
--lr-decay-style linear
--min-lr 1.0e-5
--weight-decay 1e-2
--lr-warmup-fraction .01
--clip-grad 1.0
)
MODEL_PARALLEL_ARGS=(
--tensor-model-parallel-size 8
--pipeline-model-parallel-size 16
)
DATA_ARGS=(
--data-path $DATA_PATH
--vocab-file $VOCAB_FILE
--split 949,50,1
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 100
--save-interval 10000
--eval-interval 1000
--save $CHECKPOINT_PATH
--load $CHECKPOINT_PATH
--eval-iters 10
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
torchrun ${DISTRIBUTED_ARGS[@]} pretrain_bert.py \
${BERT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]}