-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_mamba.py
262 lines (204 loc) · 8.77 KB
/
pretrain_mamba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Pretrain Mamba."""
import os
import torch
from functools import partial
from typing import List, Optional, Tuple, Union
from megatron.training import get_args
from megatron.training import print_rank_0
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDatasetConfig
from megatron.core.datasets.gpt_dataset import MockGPTDataset, GPTDataset
from megatron.core.rerun_state_machine import get_rerun_state_machine
from megatron.core.models.mamba import MambaModel
from megatron.training import pretrain
from megatron.core.utils import StragglerDetector
from megatron.core.transformer.spec_utils import import_module
from megatron.training.utils import (
get_batch_on_this_cp_rank,
get_batch_on_this_tp_rank,
get_blend_and_blend_per_split,
)
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core.models.gpt.gpt_layer_specs import get_gpt_layer_with_transformer_engine_spec
stimer = StragglerDetector()
def count_parameters_in_layer(model, layer_name):
num_params = 0
for name, param in model.named_parameters():
if layer_name in name:
num_params += param.numel()
print_rank_0(f" - {name}: {param.numel()}")
return num_params
def model_provider(pre_process=True, post_process=True) -> MambaModel:
"""Builds the model.
Args:
pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
Returns:
MambaModel: The returned model
"""
args = get_args()
print_rank_0('building Mamba model ...')
config = core_transformer_config_from_args(get_args())
assert args.use_legacy_models == False, "Mamba only supported in Mcore!"
if args.spec is not None:
mamba_stack_spec = import_module(args.spec)
else:
raise("You must provide a valid Mamba layer spec!")
model = MambaModel(
config=config,
mamba_stack_spec=mamba_stack_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
hybrid_attention_ratio=args.hybrid_attention_ratio,
hybrid_mlp_ratio=args.hybrid_mlp_ratio,
hybrid_override_pattern=args.hybrid_override_pattern,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent,
rotary_base=args.rotary_base
)
for l in range(model.decoder.num_layers_per_pipeline_rank):
layer_params = count_parameters_in_layer(model, f'decoder.layers.{l}.')
print_rank_0(f" == params layer {l}: {layer_params}")
return model
def get_batch(data_iterator):
"""Generate a batch."""
# TODO: this is pretty hacky, find a better way
if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
return None, None, None, None, None
# get batches based on the TP rank you are on
batch = get_batch_on_this_tp_rank(data_iterator)
# slice batch along sequence dimension for context parallelism
batch = get_batch_on_this_cp_rank(batch)
return batch.values()
# define spiky loss as a variation of 20% or more
SPIKY_LOSS_PERC = 0.2
def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
"""Loss function.
Args:
loss_mask (torch.Tensor): Used to mask out some portions of the loss
output_tensor (torch.Tensor): The tensor with the losses
Returns:
the loss scalar for this micro-batch
the number of non-padded tokens in this microbatch
a dict containing reporting metrics on the loss and number of tokens across
the data parallel ranks
"""
args = get_args()
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
total_tokens = loss_mask.sum()
loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), total_tokens.view(1)])
if args.context_parallel_size > 1:
torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
# Check individual rank losses are not NaN prior to DP all-reduce.
rerun_state_machine = get_rerun_state_machine()
if args.check_for_nan_in_loss_and_grad:
rerun_state_machine.validate_result(
result=loss[0],
rejection_func=torch.isnan,
message="found NaN in local forward loss calculation",
tolerance=0.0, # forward pass calculations are determinisic
fatal=True,
)
# Check for spiky loss
if args.check_for_spiky_loss:
rerun_state_machine.validate_result(
result=loss[0],
rejection_func=partial(rerun_state_machine.is_spiky_loss, threshold=SPIKY_LOSS_PERC),
message="Spiky loss",
tolerance=0.0, # forward pass calculations are determinisic
fatal=False,
)
# Reduce loss for logging.
reporting_loss = loss.clone().detach()
torch.distributed.all_reduce(reporting_loss, group=mpu.get_data_parallel_group())
local_num_tokens = loss[1].clone().detach().to(torch.int)
return (
loss[0] * args.context_parallel_size,
local_num_tokens,
{'lm loss': (reporting_loss[0], reporting_loss[1])},
)
def forward_step(data_iterator, model: MambaModel):
"""Forward training step.
Args:
data_iterator : Input data iterator
model (MambaModel): The GPT Model
"""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
global stimer
with stimer(bdata=True):
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
data_iterator)
timers('batch-generator').stop()
with stimer:
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels)
return output_tensor, partial(loss_func, loss_mask)
def is_dataset_built_on_rank():
return (
mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()
) and mpu.get_tensor_model_parallel_rank() == 0
def core_gpt_dataset_config_from_args(args):
tokenizer = get_tokenizer()
# Sometimes --data-path is too long, instead we parse it from a file.
blend: Optional[Tuple[List[str], Optional[List[float]]]]
blend_per_split: Optional[List[Optional[Tuple[List[str], Optional[List[float]]]]]]
blend, blend_per_split = get_blend_and_blend_per_split(args)
return GPTDatasetConfig(
random_seed=args.seed,
sequence_length=args.seq_length,
blend=blend,
blend_per_split=blend_per_split,
renormalize_blend_weights=args.renormalize_blend_weights,
split=args.split,
num_dataset_builder_threads=args.num_dataset_builder_threads,
path_to_cache=args.data_cache_path,
mmap_bin_files=args.mmap_bin_files,
tokenizer=tokenizer,
reset_position_ids=args.reset_position_ids,
reset_attention_mask=args.reset_attention_mask,
eod_mask_loss=args.eod_mask_loss,
create_attention_mask=args.create_attention_mask_in_dataloader,
s3_cache_path=args.s3_cache_path,
)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train test and validation.
"""
args = get_args()
config = core_gpt_dataset_config_from_args(args)
if args.mock_data:
dataset_type = MockGPTDataset
else:
dataset_type = GPTDataset
print_rank_0("> building train, validation, and test datasets for GPT ...")
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
dataset_type,
train_val_test_num_samples,
is_dataset_built_on_rank,
config
).build()
print_rank_0("> finished creating GPT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
# Temporary for transition to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})