-
Notifications
You must be signed in to change notification settings - Fork 211
/
Copy pathmain.py
executable file
·52 lines (39 loc) · 1.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import argparse
from torch.backends import cudnn
from utils.utils import *
from solver import Solver
def str2bool(v):
return v.lower() in ('true')
def main(config):
cudnn.benchmark = True
if (not os.path.exists(config.model_save_path)):
mkdir(config.model_save_path)
solver = Solver(vars(config))
if config.mode == 'train':
solver.train()
elif config.mode == 'test':
solver.test()
return solver
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--k', type=int, default=3)
parser.add_argument('--win_size', type=int, default=100)
parser.add_argument('--input_c', type=int, default=38)
parser.add_argument('--output_c', type=int, default=38)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--pretrained_model', type=str, default=None)
parser.add_argument('--dataset', type=str, default='credit')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--data_path', type=str, default='./dataset/creditcard_ts.csv')
parser.add_argument('--model_save_path', type=str, default='checkpoints')
parser.add_argument('--anormly_ratio', type=float, default=4.00)
config = parser.parse_args()
args = vars(config)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
main(config)