-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathADVC.F
316 lines (311 loc) · 10.7 KB
/
ADVC.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
C############################################################################
c #
c SUBROUTINE PROGRAM #
C VERSION 1.0 (30/04/2009) #
C AUTHORIZED BY ZHANG JINGXIN #
C SHANGHAI JIAO TONG UNIVERSITY #
C SHANGHAI, CHINA #
c---------------------------------------------------------------------------#
c computes the advective,horizontal dispersive terms in the mass #
c transportation #
c #
c############################################################################
Subroutine ADVC
Include './Include/OCERM_INF'
Dimension HQ(IJE,KB),VQ(IJM,KB)
Dimension VAR_EDGE(IJE,KB),VAR_UD(IJM,KB),GRADX(IJM,KB),
& GRADY(IJM,KB),GRADZ(IJM,KB),VAR_T(IJM,-1:KB+1)
c===========================================================================c
c initialiing arrays c
c===========================================================================c
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(I,K)
Do K = 1, KB
!$OMP DO
Do I = 1, IJM
CF(I,K) = 0.0
Enddo
!$OMP END DO NOWAIT
!$OMP DO
Do I = 1, IJE
HQ(I,K) = 0.0
Enddo
!$OMP END DO NOWAIT
!$OMP DO
Do I = 1, IJM
VQ(I,K) = 0.0
Enddo
!$OMP END DO NOWAIT
Enddo
!$OMP END PARALLEL
If(IWENOSCHEME .NE. 0) Then
Do K = 1, KBM
Do I = -1, NUM_GHOST, -1
QGHOST(I,K) = C(INDEX_GHOST(I),K)
Enddo
Enddo
Endif
C============================================================================c
c TVD schemes for the calculation of convective fluxes c
c============================================================================c
C---- Variables on the midpoint of the cell surfaces
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(I,J,K,IL,IR)
!$OMP DO
Do I = 1, IJM
Do K = 1, KB
VAR_UD(I,K) = 0.0
Enddo
Enddo
!$OMP END DO
!$OMP DO
Do I = 1, IJM
Do K = 1, KBM
VAR_T(I,K) = C(I,K)
Enddo
VAR_T(I,0) = 2. * C(I,1) - C(I,2)
VAR_T(I,-1) = VAR_T(I,0)
VAR_T(I,KB) = C(I,KBM)
VAR_T(I,KB+1) = C(I,KBM)
Enddo
!$OMP END DO
Do K = 1, KBM
!$OMP DO
Do I = 1, IJE
VAR_EDGE(I,K) = 0.0
IL = INDEX_EDGE(I,K,1)
IR = INDEX_EDGE(I,K,2)
If(CFM(I) .EQ. 1.0) Then
VAR_EDGE(I,K) = (C(IL,K) + C(IR,K)) / 2.
Else
If(IL .GT. 0) Then
If(CCM(IL) .EQ. 1.0) VAR_EDGE(I,K) = C(IL,K)
Endif
If(IR .GT. 0) Then
If(CCM(IR) .EQ. 1.0) VAR_EDGE(I,K) = C(IR,K)
Endif
Endif
Enddo
!$OMP END DO
Enddo
C!$OMP DO
C Do I = 1, IJE
C If(CFM(I) .EQ. 0.0 .OR. CFM(I) .EQ. -1.0) Then
C If(ISLIP .EQ. 0.0) Then
C N1 = IEND_EDGE(I,1)
C N2 = IEND_EDGE(I,2)
C Do K = 1, KBM
C VAR_VERTEX(N1,K) = 0.0
C VAR_VERTEX(N2,K) = 0.0
C Enddo
C Endif
C Endif
C If(CFM(I) .EQ. -2.0) Then
C N1 = IEND_EDGE(I,1)
C N2 = IEND_EDGE(I,2)
C Do K = 1, KBM
C VAR_VERTEX(N1,K) = 0.0
C VAR_VERTEX(N2,K) = 0.0
C Enddo
C Endif
C Enddo
C!$OMP END DO
!$OMP DO
Do I = 1, IJM
If(CCM(I) .EQ. 1.0) Then
Do K = 2, KBM
VAR_UD(I,K) = (C(I,K-1) + C(I,K)) / 2.0
Enddo
If(KB .GE. 3) Then
VAR_UD(I,1) = 2. * C(I,1) - VAR_UD(I,2) !#surface variable#, WangJian, 2020-3-8 14:23:40 !
VAR_UD(I,KB) = 2. * C(I,KBM) - VAR_UD(I,KBM)
Else
VAR_UD(I,1) = C(I,1)
VAR_UD(I,2) = C(I,1)
Endif
C--------------Begin--------2019-12-13 11:19:53, added by WangJian------------------c
Do K = 2, KBM
GRADZ(I,K) = (C(I,K-1) - C(I,K))/DC(I)/DZZ(K-1)
Enddo
GRADZ(I,1) = 0.0
GRADZ(I,KB) = 0.0
C--------------End--------2019-12-13 11:19:58, added by WangJian------------------c
Endif
Enddo
!$OMP END DO
!$OMP END PARALLEL
Call GRAD_XY(VAR_EDGE,GRADX,GRADY)
! Call GRAD_Z(VAR_UD,GRADZ)
Call TVDSCHEMEH(HQ,C,GRADX,GRADY,8)
Call TVDSCHEMEV(VQ,C,VAR_T,GRADZ,8)
c============================================================================c
C Advection Descrization by 2nd Order TVD c
c============================================================================c
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(I,J,K,AAMF,FLUX1,FLUX2,ID,IS,ISS)
If (ADVECT.EQ.'NON-LINEAR') Then
c----------------------------------------------------------------------------c
c horizontal advective terms c
c----------------------------------------------------------------------------c
Do K = 1, KBM
!$OMP DO
Do I = 1, IJM
If(CCM(I) .EQ. 1.0) Then
Do J = 1, CELL_POLYGEN(I)
If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
CF(I,K) = CF(I,K) + DZ(K) *
& HQ(CELL_SIDE(I,J,1),K) * CELL_CUV(I,J,6) *
& (UN(CELL_SIDE(I,J,1),K) * CELL_CUV(I,J,7) +
& VN(CELL_SIDE(I,J,1),K) * CELL_CUV(I,J,8))
Endif
Enddo
Endif
Enddo
!$OMP END DO NOWAIT
Enddo
!$OMP BARRIER
c----------------------------------------------------------------------------c
c vertical advective terms c
c----------------------------------------------------------------------------c
Do K = 1, KBM
!$OMP DO
Do I = 1, IJM
If(CCM(I) .EQ. 1.0) Then
CF(I,K) = -CF(I,K) - AREA(I) *
& (VQ(I,K) * W(I,K) - VQ(I,K+1) * W(I,K+1))
Endif
Enddo
!$OMP END DO NOWAIT
Enddo
!$OMP BARRIER
Endif
c============================================================================c
C Horizontal Diffusion Descrization by CS c
c============================================================================c
Do K = 1, KBM
!$OMP DO
Do I = 1, IJM
If(CCM(I) .EQ. 1.0) Then
Do J = 1, CELL_POLYGEN(I)
If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
AAMF = (AAM(I,K) + AAM(CELL_SIDE(I,J,2),K)) / 2. + UMOL
FLUX1 = (DISCOE(I,J,1) - DISCOE(I,J,8))* AAMF *
& (C(CELL_SIDE(I,J,2),K) - C(I,K))
FLUX2 = (DISCOE(I,J,7) - DISCOE(I,J,2)) * AAMF*
& (CV(CELL_SIDE(I,J,4),K) -
& CV(CELL_SIDE(I,J,3),K))
CF(I,K) = CF(I,K) + (FLUX1 + FLUX2) * DZ(K)
Endif
Enddo
Endif
Enddo
!$OMP END DO NOWAIT
Enddo
!$OMP BARRIER
c============================================================================c
c open boundary treatments c
c============================================================================c
!$OMP MASTER
C----- elevation boundary condition
If(NUMEBC .NE. 0) Then
Do N = 1, NUMEBC
ID = IEBC(N)
IS = IEBCINX(N)
Do K = 1, KBM
UNEBC = UR(ID,K) * CELL_CUV(ID,IS,7) +
& VR(ID,K) * CELL_CUV(ID,IS,8)
If(UNEBC .GT. 0.0) Then
CF(ID,K) = CF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6)*
& C(ID,K) * UNEBC
Else
CF(ID,K) = CF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6)*
& UNEBC * CEBC(N)
Endif
Enddo
Enddo
Endif
C----- astrotidal boundary condition
If(NUMAST .NE. 0) Then
Do N = 1, NUMAST
ID = IABC(N)
IS = IABCINX(N)
Do K = 1, KBM
UNAST = UR(ID,K) * CELL_CUV(ID,IS,7) +
& VR(ID,K) * CELL_CUV(ID,IS,8)
If(UNAST .GT. 0.0) Then
VISF(ID,K) = VISF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6)*
& C(ID,K) * UNAST
Else
VISF(ID,K) = VISF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6)*
& UNAST * CAST(N)
Endif
Enddo
Enddo
Endif
c----- discharge boundary condition
If(NUMQBC .NE. 0) Then
Call BCOND(3)
Do N = 1, NUMQBC
ID = IQBC(N)
IS = IQBCINX(N)
ISS = CELL_SIDE(ID,IS,1)
Do K = 1, KBM
UNQBC = UN(ISS,K) * CELL_CUV(ID,IS,7) +
& VN(ISS,K) * CELL_CUV(ID,IS,8)
If(UNQBC .GT. 0.0) Then
CF(ID,K) = CF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6)*
& C(ID,K) * UNQBC
Else
CF(ID,K) = CF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6)*
& UNQBC * CQBC(N,K)
Endif
Enddo
Enddo
Endif
C----- velocity boundary condition
If(NUMVBC .NE. 0) Then
Do N = 1, NUMVBC
ID = IVBC(N)
IS = IVBCINX(N)
Do K = 1, KBM
UNVBC = UN(CELL_SIDE(ID,IS,1),K) * CELL_CUV(ID,IS,7) +
& VN(CELL_SIDE(ID,IS,1),K) * CELL_CUV(ID,IS,8)
If(UNVBC .GT. 0.0) Then
CF(ID,K) = CF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6) *
& C(ID,K) * UNVBC
Else
CF(ID,K) = CF(ID,K) - DZ(K) * CELL_CUV(ID,IS,6) *
& CVBC(N,K) * UNVBC
Endif
Enddo
Enddo
Endif
C----- velocity boundary condition
If(NUMDBC .NE. 0) Then
Do N = 1, NUMDBC
ID = IDBC(N)
Do K = 1, KBM
FRESH = QDIFF(N) * VDDIST(N,K) / 100.
CF(ID,K) = CF(ID,K) + DTI * CDBC(N) / DC(ID) *
& FRESH * (1. + Sign(1.,FRESH)) / 2. +
& DTI * AREA(ID) * DZ(K) * C(ID,K) *
& FRESH * (1. - Sign(1.,FRESH)) / 2.
Enddo
Enddo
Endif
!$OMP END MASTER
!$OMP BARRIER
C============================================================================C
C Step forward in time C
C============================================================================C
Do K = 1, KBM
!$OMP DO
Do I = 1, IJM
If(CCM(I) .EQ. 1.0) Then
CF(I,K) = C(I,K) * AREA(I) * DZ(K) + DTI * CF(I,K)
Endif
Enddo
!$OMP END DO
Enddo
!$OMP END PARALLEL
c====================== end subroutine program ============================C
Return
End