-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDYN.F
461 lines (452 loc) · 15.9 KB
/
DYN.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
C############################################################################
c #
c SUBROUTINE PROGRAM #
C VERSION 1.0 (28/07/2009) #
C AUTHORIZED BY ZHANG JINGXIN #
C SHANGHAI JIAO TONG UNIVERSITY #
C SHANGHAI, CHINA #
c---------------------------------------------------------------------------#
c computes the hydrodynamic pressure #
c #
c############################################################################
Subroutine DYN
Include './Include/OCERM_INF'
Include './Include/VORGEN_INF'
Common/DYNBLK/AS(IJM,KB,IPOLYGEN),AB(IJM,KB),AT(IJM,KB),
& AP(IJM,KB),BB(IJM,KB),X(IJM,KB),XINI(IJM,KB)
c Parameter(WB_ANGLE_I = 2.*3.14*30./360.,
c & WB_ANGLE_E = 2.*3.14*10./360.)
C Common/SOURCE/BB(IJM,KB)
Dimension UT(IJM,KB),VT(IJM,KB),WT(IJM,KB),ET(IJM,KB),
& WW(IJM,KB),WGENDEL(N_SOURCE,KB),FLUX(IJM,KB),QZT(IJM,KB)
Dimension TEMP(IJM,KB),ELFX(IJM),ELFY(IJM),WB_MASK2(IJM),
& HX(IJM),HY(IJM),WTT(KB,2)
Dimension PP(KBM),PV(KBM),DZP(KBM)
Dimension FLU_SOURCE(NUM_CELL,NUM_VER)
IIII = 0
IJM_B = IJM_DYN_B + IIII
IJM_E = IJM_DYN_E + IIII
c===========================================================================c
C initializing the arrays c
c===========================================================================c
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(I,J,K,IR,IL,PV,DY0,DY1,DZP,UNEW,VNEW,
!$OMP& P1U,P2U,P1V,P2V,PUSUR,PVSUR,ZSIGMA)
Do K = 1, KB
!$OMP DO
Do I = 1, IJM
Do J = 1, CELL_POLYGEN(I)
AS(I,K,J) = 0.0
Enddo
AB(I,K) = 0.0
AT(I,K) = 0.0
AP(I,K) = 1.0
BB(I,K) = 0.0
X(I,K) = 0.0
XINI(I,K) = PN(I,K)
C PT(I,K) = 0.0
UT(I,K) = 0.0
VT(I,K) = 0.0
WT(I,K) = 0.0
QZT(I,K) = 0.0
FLUX(I,K) = 0.0
Enddo
!$OMP END DO
Enddo
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
ELFX(I) = 0.0
ELFY(I) = 0.0
C ELFXN0(I) = 0.0
C ELFYN0(I) = 0.0
HX(I) = 0.0
HY(I) = 0.0
C HXN0(I) = 0.0
C HYN0(I) = 0.0
WB_MASK2(I) = 0.0
Do J = 1, CELL_POLYGEN(I)
HX(I) = HX(I) +
& HS(CELL_SIDE(I,J,1)) *
& CELL_CUV(I,J,7) * CELL_CUV(I,J,6)
HY(I) = HY(I) +
& HS(CELL_SIDE(I,J,1)) *
& CELL_CUV(I,J,8) * CELL_CUV(I,J,6)
If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
ELFX(I) = ELFX(I) +
& WIX(I,J) * (ELF(CELL_SIDE(I,J,2)) - ELF(I))
ELFY(I) = ELFY(I) +
& WIY(I,J) * (ELF(CELL_SIDE(I,J,2)) - ELF(I))
C ELFXN0(I) = ELFXN0(I) +
C & WIX(I,J) * (EL(CELL_SIDE(I,J,2)) - EL(I))
C ELFYN0(I) = ELFYN0(I) +
C & WIY(I,J) * (EL(CELL_SIDE(I,J,2)) - EL(I))
Endif
Enddo
HX(I) = HX(I) / AREA(I)
HY(I) = HY(I) / AREA(I)
Endif
Enddo
!$OMP END DO
C-------- TEMPORARY VELOCITIES
c!$OMP DO
c Do I = 1, IJM
c If(CCM(I) .EQ. 1.0) Then
c Do K = 1, KBM
c UNEW = 0.0
c VNEW = 0.0
c Do J = 1, CELL_POLYGEN(I)
c If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
c UNEW = UNEW +
c & WIX(I,J) * (PN(CELL_SIDE(I,J,2),K) - PN(I,K))
c VNEW = VNEW +
c & WIY(I,J) * (PN(CELL_SIDE(I,J,2),K) - PN(I,K))
c Endif
c Enddo
c UT(I,K) = U(I,K) - DTI * DC(I) / RMEAN(I,K) * UNEW
c VT(I,K) = V(I,K) - DTI * DC(I) / RMEAN(I,K) * VNEW
c Enddo
c Endif
c Enddo
c!$OMP END DO
!$OMP DO
Do I = 1, IJM
If(CCM(I) .EQ. 1.0) Then
Do K = 2, KBM
TEMP(I,K) = (PN(I,K-1) - PN(I,K)) / DZZ(K-1)
Enddo
TEMP(I,1) = (0.0 - PN(I,1)) / (0.5 * DZ(1))
c TEMP(I,1) = 0.0
TEMP(I,KB) = 0.0
Do K = 1, KBM
UT(I,K) = DTI * (TEMP(I,K)+TEMP(I,K+1))/2./ RMEAN(I,K) *
& ((1. + ZZ(K)) * ELFX(I) + ZZ(K) * HX(I))
VT(I,K) = DTI * (TEMP(I,K)+TEMP(I,K+1))/2./ RMEAN(I,K) *
& ((1. + ZZ(K)) * ELFY(I) + ZZ(K) * HY(I))
Enddo
Endif
Enddo
!$OMP END DO
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
Do K = 2, KBM
TEMP(I,K) = QZ(I,K) * PORE_VF(I,K) -
& (U(I,K-1) + U(I,K)) / 2. * PORE_VF(I,K) *
& ((1.+Z(K)) * ELFX(I) + Z(K) * HX(I)) -
& (V(I,K-1) + V(I,K)) / 2. * PORE_VF(I,K)*
& ((1.+Z(K)) * ELFY(I) + Z(K) * HY(I))
Enddo
TEMP(I,1) = 0.0
TEMP(I,KB) = 0.0
Endif
Enddo
!$OMP END DO
c===========================================================================c
c arrays for the hydrodynamic pressure based on the c
c continuty equation: deta/dt+dQx/dx+dQy/dy+dw/dz=0 c
c===========================================================================c
Do K = 1, KBM
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
AP(I,K) = 0.0
Do J = 1, CELL_POLYGEN(I)
If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
AS(I,K,J) = DTI * DZ(K) * DS(CELL_SIDE(I,J,1)) /
& (.5 * (RMEAN(I,K) + RMEAN(CELL_SIDE(I,J,2),K)))*
& (DISCOE(I,J,1) - DISCOE(I,J,8))*
& PORE_HF(CELL_SIDE(I,J,1),K)
AP(I,K) = AP(I,K) + AS(I,K,J)
IL = I
IR = CELL_SIDE(I,J,2)
BB(I,K) = BB(I,K) + DZ(K) * CELL_CUV(I,J,6) *
& PORE_HF(CELL_SIDE(I,J,1),K) *
& ((U(IL,K) + U(IR,K) + UT(IL,K) + UT(IR,K)) / 2.*
& CELL_CUV(I,J,7) +
& (V(IL,K) + V(IR,K) + VT(IL,K) + VT(IR,K))/2.*
& CELL_CUV(I,J,8))
Endif
Enddo
Endif
Enddo
!$OMP END DO
Enddo
!$OMP BARRIER
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
Do K = 2, KBM - 1
AT(I,K) = DTI * AREA(I) / (HC(I)+ELF(I)) / DZZ(K-1) /
& RMEAN(I,K) * PORE_VF(I,K)
AB(I,K) = DTI * AREA(I) / (HC(I)+ELF(I)) / DZZ(K) /
& RMEAN(I,K) * PORE_VF(I,K+1)
AP(I,K) = AP(I,K) + AT(I,K) + AB(I,K)
BB(I,K) = BB(I,K) + AREA(I) / DC(I) *
& (TEMP(I,K) - TEMP(I,K+1))
Enddo
C----- surface layer ----------------------------------------------------c
AT(I,1) = 0.0
AB(I,1) = DTI * AREA(I) / (HC(I)+ELF(I)) / DZZ(1) / RMEAN(I,1) *
& PORE(I,1)
AP(I,1) = AP(I,1) + AT(I,1) + AB(I,1)
& + AREA(I) / RMEAN(I,1) / GRAV / DTI
BB(I,1) = BB(I,1) + AREA(I) * (ELF(I) - EL(I)) / DTI -
& AREA(I) / DC(I) * TEMP(I,2)
c----- bottom layer -----------------------------------------------------c
AT(I,KBM) = DTI * AREA(I) / (HC(I)+ELF(I))/DZZ(KBM-1)/RMEAN(I,KBM)
& * PORE(I,KBM)
AB(I,KBM) = 0.0
AP(I,KBM) = AP(I,KBM) + AT(I,KBM) + AB(I,KBM)
BB(I,KBM) = BB(I,KBM) + AREA(I) / DC(I) * TEMP(I,KBM)
Endif
Enddo
!$OMP END DO
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
Do K = 1, KBM
BB(I,K) = -BB(I,K)
Enddo
Endif
Enddo
!$OMP END DO
c----- implementing the source terms
C!$OMP DO
C Do I = 1, IJM
C If(CCM(I) .EQ. 1.0) Then
C Do K = 1, KBM
C BB(I,K) = -(BB(I,K) + AREA(I) * DZ(K) *
C & (ELF(I) - EL(I)) / DTI)
C Enddo
C Endif
C Enddo
C!$OMP END DO
!$OMP END PARALLEL
C===========================================================================C
C boundary condition c
c===========================================================================c
c----- discharge boundary conditions
If(NUMQBC .NE. 0) Then
Do N = 1, NUMQBC
ID = IQBC(N)
IS = IQBCINX(N)
Do K = 1, KBM
Do J = 1, CELL_POLYGEN(ID)
If(CFM(CELL_SIDE(ID,J,1)) .EQ. 1.0) Then
AS(ID,K,J) = 0.0
Endif
Enddo
AP(ID,K) = 1.0
AB(ID,K) = 0.0
AT(ID,K) = 0.0
BB(ID,K) = 0.0
Enddo
Enddo
Endif
c----- velocity boundary conditions
If(NUMVBC .NE. 0) Then
Do N = 1, NUMVBC
ID = IVBC(N)
IS = IVBCINX(N)
Do K = 1, KBM
BB(ID,K) = BB(ID,K) - DZ(K) * CELL_CUV(ID,IS,6) *
& DS(CELL_SIDE(ID,IS,1)) *
& (UN(CELL_SIDE(ID,IS,1),K) * CELL_CUV(ID,IS,7) +
& VN(CELL_SIDE(ID,IS,1),K) * CELL_CUV(ID,IS,8))
Enddo
Enddo
Endif
c----- elevation
If(NUMEBC .NE. 0) Then
Do N = 1, NUMEBC
ID = IEBC(N)
IS = IEBCINX(N)
Do K = 1, KBM
C UNEBC = UR(ID,K) * CELL_CUV(ID,IS,7) +
C & VR(ID,K) * CELL_CUV(ID,IS,8)
C If(UNEBC .LE. 0.0) Then
Do J = 1, CELL_POLYGEN(ID)
If(CFM(CELL_SIDE(ID,J,1)) .EQ. 1.0) Then
AS(ID,K,J) = 0.0
Endif
Enddo
AP(ID,K) = 1.0
AB(ID,K) = 0.0
AT(ID,K) = 0.0
BB(ID,K) = 0.0
Enddo
Enddo
Endif
c----- astrotide boundary
If(NUMAST .NE. 0) Then
Do N = 1, NUMAST
ID = IABC(N)
IS = IABCINX(N)
Do K = 1, KBM
BB(ID,K) = BB(ID,K) - DZ(K) * CELL_CUV(ID,IS,6) *
& (U(ID,K) * CELL_CUV(ID,IS,7) +
& V(ID,K) * CELL_CUV(ID,IS,8))
Enddo
Enddo
Endif
C===========================================================================C
C numerical wave flume c
C===========================================================================C
If(IFLUME .EQ. 1) Then
Do I = 1, N_SOURCE
Do K = 1, KBM
WGENDEL(I,K) = WGEN(I,K)
Enddo
Enddo
Call WAVEGEN(1)
Do I = 1, N_SOURCE
II = IGEN(I)
Do K = 1, KBM
BB(II,K) = BB(II,K) +
& DZ(K) * WGEN(I,K) * AREA(II)
ENDDO
Enddo
Endif
C---------------------------------------------------------------------------C
C Fluctuation generating c
C---------------------------------------------------------------------------C
If(DES .EQ. 'SAZDES1') Then
Do I = 1, NUM_CELL
ID = ID_CELL(I)
IS = ID_CELL_EDGE(I)
Do K = 1, NUM_VER - 1
FLU_SOURCE(I,K) = DS(CELL_SIDE(ID,IS,1)) * DZ(K) *
& CELL_CUV(ID,IS,6) *
& (UDIS(I,K) * CELL_CUV(ID,IS,7) +
& VDIS(I,K) * CELL_CUV(ID,IS,8)) +
& AREA(ID) * (WDIS(I,K) - WDIS(I,K+1))
BB(ID,K) = BB(ID,K) + 2. * FLU_SOURCE(I,K) +
& (WDIS(I,K) - WDIS(I,K+1)) * AREA(ID)
Enddo
Enddo
Endif
c---------------------------------------------------------------------------c
c surface boundary condition c
c---------------------------------------------------------------------------c
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(I,J,WB_C)
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
Do J = 1, CELL_POLYGEN(I)
If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
C AS(I,1,J) = 0.0
Endif
Enddo
C AP(I,1) = 1.0
C AB(I,1) = 0.0
C AT(I,1) = 0.0
C BB(I,1) = 0.0
C BB(I,1) = -DC(I) * RMEAN(I,1) * DZ(1) / 2. * W(I,1) / DTI
Endif
Enddo
!$OMP END DO
!$OMP END PARALLEL
c===========================================================================c
c Switch from Non-hydrostatic model to NSE c
c in order to model the wave breaking c
c===========================================================================c
If(WAVE_BREAKING .EQ. 1.0) Then
Call WAVEBREAKING
Endif
C===========================================================================C
C solving the equation by Bi-CGSTAB method c
c===========================================================================c
c Call SMOOTHING(BB)
C!$ begin1 = OMP_GET_WTIME()
Call SOLVE3DPOLCG
c Call SOLVEDYNICCG
C!$ END1 = OMP_GET_WTIME()
C PRINT*, END1-BEGIN1
C STOP
C Call SOLVEDYNICBICG
C Call SOLVEDYNICCG
ccc Call SOLVEDYNPRESOR
CCC Call SOLVEDYNSORCG
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(I,K)
Do I = IJM_B, IJM_E
Do K = 1, KBM
PN(I,K) = X(I,K)
Enddo
Enddo
!$OMP END PARALLEL DO
C---- SMOOTHING THE PN -----------------------------------------C
c If(Mod(NSTEP,1) .EQ. 0.0 ) Then
c Call SMOOTHINGNOR(PN)
c Endif
C===========================================================================C
C calculate the velocity at time step n+1 c
C===========================================================================C
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(I,J,K,KK,II,UNEW,VNEW,ELTEMP,
!$OMP& ZK,ZKU,ZKD,PNSUR,ZSIGMA,Z1,Z2,Z3,P1,P2,P3,
!$OMP& PV,DY0,DY1,DZP,IL,IR,WB_C)
Do K = 1, KBM
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
UNEW = 0.0
VNEW = 0.0
Do J = 1, CELL_POLYGEN(I)
If(CFM(CELL_SIDE(I,J,1)) .EQ. 1.0) Then
UNEW = UNEW + (PN(I,K)+PN(CELL_SIDE(I,J,2),K))/2. *
& CELL_CUV(I,J,7) * CELL_CUV(I,J,6)
VNEW = VNEW + (PN(I,K)+PN(CELL_SIDE(I,J,2),K))/2. *
& CELL_CUV(I,J,8) * CELL_CUV(I,J,6)
Else
UNEW = UNEW + PN(I,K)*CELL_CUV(I,J,7)*CELL_CUV(I,J,6)
VNEW = VNEW + PN(I,K)*CELL_CUV(I,J,8)*CELL_CUV(I,J,6)
Endif
Enddo
UT(I,K) = - DTI*DC(I) / RMEAN(I,K) * UNEW / AREA(I) + UT(I,K)
VT(I,K) = - DTI*DC(I) / RMEAN(I,K) * VNEW / AREA(I) + VT(I,K)
Endif
Enddo
!$OMP END DO
Enddo
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
Do K = 2, KBM
QZT(I,K) = - DTI / (0.5 *(RMEAN(I,K) + RMEAN(I,K-1))) *
& (PN(I,K-1) - PN(I,K)) / DZZ(K-1)
Enddo
QZT(I,1) = - DTI / RMEAN(I,1) *
& (0.0 - PN(I,1)) / (.5 * DZ(1))
c QZT(I,1) = 0.0
QZT(I,KB) = 0.0
Endif
Enddo
!$OMP END DO
C----------------------------------------------------------------------------C
C variables at time step n+1 c
c----------------------------------------------------------------------------c
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
Do K = 1, KB
U(I,K) = U(I,K) + UT(I,K)
V(I,K) = V(I,K) + VT(I,K)
QZ(I,K) = QZ(I,K) + QZT(I,K)
PN(I,K) = PN(I,K) - PN(I,1)
Enddo
Endif
Enddo
!$OMP END DO
!$OMP DO
Do I = IJM_B, IJM_E
If(CCM(I) .EQ. 1.0) Then
ELF(I) = ELF(I) + QZT(I,1) / DC(I) * DTI
Endif
Enddo
!$OMP END DO
!$OMP END PARALLEL
C============================================================================C
1000 Continue
Return
End