-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_tf_log.py
211 lines (175 loc) · 7.15 KB
/
plot_tf_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Helper functions for monitoring the progress of a training loop.
"""
import argparse
import matplotlib.pyplot as plt
import numpy as np
import scipy
from tensorboard.backend.event_processing import event_accumulator
import os
import glob
from scipy.stats import linregress
from tensorflow.python.summary.summary_iterator import summary_iterator
from tensorflow.core.util.event_pb2 import Event
def most_recent_log(dir):
logs = glob.glob("/home/tijmen/cosmosage/models/" + dir + "/*/runs/*/*.0")
sorted_logs = sorted(logs, key=lambda x: os.path.getmtime(x), reverse=True)
if sorted_logs:
return sorted_logs[0]
else:
raise IndexError("No directories found")
def plot_loss(file_paths, plot_type="default", detailed_pts_per_eval=10):
plt.figure(figsize=(12, 8))
for idx, file_path in enumerate(file_paths):
# Load the event accumulator
ea = event_accumulator.EventAccumulator(file_path)
ea.Reload()
# # Print all available items inside ea
# print(ea.scalars.Keys())
# # available keys are
# # ['train/loss', 'train/learning_rate', 'train/epoch', 'eval/loss', 'eval/runtime', 'eval/samples_per_second', 'eval/steps_per_second']
tloss = ea.scalars.Items("train/loss")
eloss = ea.scalars.Items("eval/loss")
lr = ea.scalars.Items("train/learning_rate")
epoch = ea.scalars.Items("train/epoch")
# Extract steps and loss values for training loss
t_steps = np.array([s.step for s in tloss])
t_losses = np.array([s.value for s in tloss])
# Extract steps and loss values for evaluation loss
e_steps = np.array([s.step for s in eloss])
e_losses = np.array([s.value for s in eloss])
# Extract steps and learning rate values
lr_steps = np.array([s.step for s in lr])
lr_values = np.array([s.value for s in lr])
# Extract steps and epoch values
epoch_steps = np.array([s.step for s in epoch])
epoch_values = np.array([s.value for s in epoch])
plt.figure(figsize=(12, 6))
# Smooth the loss curve if plot_type is "logsmooth"
if plot_type == "logsmooth":
# gaussian smoothing using edge handling that doesn't change the length
t_losses = scipy.ndimage.filters.gaussian_filter1d(
t_losses, sigma=10, mode="nearest"
)
# Plotting
if plot_type == "default":
plt.plot(
t_steps, t_losses, label=f"Training Loss (Run {idx+1})", color=f"C{idx}"
)
plt.plot(
e_steps,
e_losses,
label=f"Evaluation Loss (Run {idx+1})",
color=f"C{idx}",
linestyle="dashed",
)
elif plot_type == "logsmooth":
plt.semilogy(
t_steps, t_losses, label=f"Training Loss (Run {idx+1})", color=f"C{idx}"
)
plt.semilogy(
e_steps,
e_losses,
label=f"Evaluation Loss (Run {idx+1})",
color=f"C{idx}",
linestyle="dashed",
)
elif plot_type == "detailed":
# Bin the loss values
bin_size = int(len(t_losses) / (detailed_pts_per_eval * len(e_losses)))
num_bins = int(len(t_losses) / bin_size)
t_losses_binned = np.mean(
t_losses[: num_bins * bin_size].reshape(-1, bin_size), axis=1
)
t_steps_binned = np.mean(
t_steps[: num_bins * bin_size].reshape(-1, bin_size), axis=1
)
# Calculate error bars
t_losses_std = np.std(
t_losses[: num_bins * bin_size].reshape(-1, bin_size), axis=1
) / np.sqrt(bin_size)
# Plotting
plt.errorbar(
t_steps_binned,
t_losses_binned,
yerr=t_losses_std,
label=f"Training Loss (Run {idx+1})",
color=f"C{idx}",
capsize=3,
)
plt.plot(
e_steps,
e_losses,
label=f"Evaluation Loss (Run {idx+1})",
color=f"C{idx}",
linestyle="dashed",
)
plt.ylabel("Loss")
# label each evaluation point with the epoch number
for i, e_loss in enumerate(e_losses):
epoch_number = epoch_values[np.where(epoch_steps == e_steps[i])[0][0]]
plt.text(
e_steps[i],
e_loss,
f"Epoch: {epoch_number:.2f}",
color=f"C{idx}",
fontsize=9,
)
plt.grid()
# Plotting learning rate on the other axis
ax2 = plt.gca().twinx()
ax2.plot(lr_steps, lr_values, label="Learning Rate", color="red", alpha=0.15)
ax2.set_ylabel("Learning Rate")
elif plot_type == "slopes":
num_segments = 10
segment_length = len(t_steps) // num_segments
# Initialize arrays to store slopes and midpoints of each segment
slopes = np.zeros(num_segments)
midpoints = np.zeros(num_segments)
indices = np.zeros(num_segments)
avg_losses = np.zeros(num_segments)
# Calculate slopes for each segment and determine the midpoints based on the fit
for i in range(num_segments):
start_idx = i * segment_length
end_idx = (i + 1) * segment_length if i != num_segments - 1 else len(t_steps)
indices[i] = (start_idx+end_idx)/2
segment_steps = t_steps[start_idx:end_idx]
segment_losses = t_losses[start_idx:end_idx]
avg_losses[i] = np.mean(segment_losses)
slope, intercept, _, _, _ = linregress(segment_steps, segment_losses)
slopes[i] = slope
# Calculate midpoint based on the fit
avg_loss = (np.max(segment_losses) + np.min(segment_losses)) / 2
x_mid = (avg_loss - intercept) / slope
midpoints[i] = x_mid
# Create subplots
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(9, 4))
# Plot slopes in the top subplot
ax1.plot(indices, slopes, label="Slopes", color="blue")
ax1.set_xlabel("Steps")
ax1.set_ylabel("Slope")
ax1.grid()
# Plot training loss in the bottom subplot
ax2.plot(indices, avg_losses, label=f"Training Loss", color="green")
ax2.set_xlabel("Steps")
ax2.set_ylabel("Training Loss")
ax2.grid()
plt.xlabel("Steps")
plt.legend()
plt.show()
def main():
parser = argparse.ArgumentParser(
description="Plot training and evaluation loss from TensorFlow event files."
)
parser.add_argument(
"file_paths",
nargs="+",
type=str,
help="Path(s) to the TensorFlow event file(s)",
)
args = parser.parse_args()
plot_loss(args.file_paths)
if __name__ == "__main__":
main()