forked from progschj/ThreadPool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThreadPool.h
152 lines (132 loc) · 3.64 KB
/
ThreadPool.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#ifndef _THREAD_POOL_
#define _THREAD_POOL_
#include <queue>
#include <condition_variable>
#include <future>
#include <functional>
#include <thread>
#include <mutex>
#include <vector>
#include <stdexcept>
#if __cplusplus < 201402L && (!defined(_WIN32))
namespace std {
template<class T> struct _Unique_if {
typedef unique_ptr<T> _Single_object;
};
template<class T> struct _Unique_if<T[]> {
typedef unique_ptr<T[]> _Unknown_bound;
};
template<class T, size_t N> struct _Unique_if<T[N]> {
typedef void _Known_bound;
};
template<class T, class... Args>
typename _Unique_if<T>::_Single_object
make_unique(Args&&... args) {
return unique_ptr<T>(new T(std::forward<Args>(args)...));
}
template<class T>
typename _Unique_if<T>::_Unknown_bound
make_unique(size_t n) {
typedef typename remove_extent<T>::type U;
return unique_ptr<T>(new U[n]());
}
template<class T, class... Args>
typename _Unique_if<T>::_Known_bound
make_unique(Args&&...) = delete;
}
#endif
using namespace std;
class ThreadPool {
public:
ThreadPool(size_t);
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
->std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
void wait();
private:
// need to keep track of threads so we can join them
std::vector< std::thread > workers;
// the task queue
std::queue< std::function<void()> > tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
size_t tasks_left;
std::mutex tasks_left_mutex;
std::condition_variable wait_condition;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: stop(false), tasks_left(0)
{
for (size_t i = 0; i<threads; ++i)
workers.emplace_back(
[this]
{
for (;;)
{
std::function<void()> task;
// make unique lock vaild
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock,
[this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
{
std::lock_guard<std::mutex> lock(tasks_left_mutex);
tasks_left --;
}
wait_condition.notify_one();
}
}
);
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::lock_guard<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if (stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task]() { (*task)(); });
}
{
std::lock_guard<std::mutex> lock(tasks_left_mutex);
tasks_left ++;
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::lock_guard<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread &worker : workers)
worker.join();
}
inline void ThreadPool::wait() {
std::unique_lock<std::mutex> lock(tasks_left_mutex);
if (tasks_left > 0) {
wait_condition.wait(lock, [this] {return tasks_left == 0;});
}
}
#endif