-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy path1030_Beautiful Subsequence (35).cpp
122 lines (101 loc) · 2.87 KB
/
1030_Beautiful Subsequence (35).cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <iostream>
#include <cstring>
using namespace std;
// reference: ZJU ADS Presentation - Beautiful Subsequence - Group 4(https://www.bilibili.com/video/av668431512/)
// implementation for below code use reverse thought.
// define BIT A and B,
// array A stores occurrence number of e[i], it will be incremental updated based on array e iteration.
// array B stores the ugly set (set size >= 2) result of e[i], it will be incremental updated based on array e iteration as well.
// if we want to know B[e[k]], how the relation transfer here?
// 1. every single number e[i] except range [ e[k]-m, e[k]+m ] will contribute to generate 2 element set.
// 2. every number e[i] except range [ e[k]-m, e[k]+m ] if its B already has ugly set, so it will contribute to e[k] as last element in the set.
// for example:
// 5 3 8 6
// 0: e[0] -> 5
// A 1 0 0 0
// B 0 0 0 0
// 1: e[1] -> 3
// A 1 1 0 0
// B 0 0 0 0
// 2: e[2] -> 8
// A 1 1 1 0
// B 0 0 1(5)+1(3)=2 0
// (5, 8), (3, 8)
// 3: e[3] -> 6
// A 1 1 1 1
// B 0 0 2 1(3)=1
// (3, 6)
// so sum of B is totale numebr of the ugly set (size > 2), then add extra empty set(1) and single element set(4), so result is 3 + 1 + 4 = 8.
// all combination for sample is 2^4 = 16, beautiful set = full set - ugly set = 16 - 8 = 8.
typedef long long int64;
const int64 maxn(101001), mod(1000000007);
int64 e[maxn], A[maxn+1], B[maxn+1];
int64 lowbit(int64 x) { return x & -x; }
void add(int64 arr[], int64 x, int64 c)
{
for (int64 i = x; i <= maxn; i += lowbit(i))
arr[i] = (arr[i] + c) % mod;
}
int64 sum(int64 arr[], int64 x)
{
int64 res = 0;
for (int64 i = x; i > 0; i -= lowbit(i))
res = (res + arr[i]) % mod;
return res;
}
// sum of (begin, end]
int64 query(int64 arr[], int64 begin, int64 end) {
return (sum(arr, end) - sum(arr, begin)) % mod;
}
//快速幂 a^n % p
int64 pow(int64 a, int64 n, int64 p) {
int64 ans = 1;
while(n > 0)
{
if(n & 1) ans = ans * a % p;
a = a * a % p;
n >>= 1;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
int64 n, m;
cin >> n >> m;
for (int64 i = 0; i < n; i++) cin >> e[i];
// 1. single elements not include
// 2. empty set not include
int64 ugly_sum = n + 1;
add(A, e[0], 1);
for (int64 i = 1; i < n; i++) {
int64 t = e[i];
int64 part1 = (sum(A, t-m-1) + query(A, t+m, maxn)) % mod;
int64 part2 = (sum(B, t-m-1) + query(B, t+m, maxn)) % mod;
add(A, t, 1);
add(B, t, (part1+part2) % mod);
}
ugly_sum = (ugly_sum + sum(B, maxn)) % mod;
int64 tot = pow(2, n, mod);
cout << (tot + mod - ugly_sum) % mod << endl;
return 0;
}
/*
ans: 8
4 2
5 3 8 6
ans: 57
6 1
1 1 1 1 1 1
ans: 73741786
30 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ans: 16
6 1
10 12 14 16 1 2
ans: 20
6 1
8 1 2 10 3 12
ans: 0
4 1
1 3 5 7
*/