Skip to content

Latest commit

 

History

History
92 lines (57 loc) · 1.71 KB

changelog.md

File metadata and controls

92 lines (57 loc) · 1.71 KB

Changelog

1.1.0

Cross validation

  • params distribution: RandomizedSearchCV
  • scorer: CAPE (from Anasse library)

1.0.3

Feature extraction

  1. cyclical time encoding:

    1. remove half_hour_of_day
    2. remove day_of_week
  2. lags:

    • Features: wind features only
    • range: [1]
  3. rollmean:

    • Features: [wind_speed, wind_vector_azimuth, meteorological_wind_direction]
    • period: [3H]

1.0.2

Refactoring

  • model to models

Fitting

  • Estimator = RandomForestRegressor

  • Parameters:

    • set random_state=42 instead of None
  • Fill NAs strategy:

    1. Second fill: By self.y_median, i.e the median Production median (instead of 0)

1.0.1

1.0.0 -- First submission

Preprocessing

  1. df_to_ts

Feature extraction

  1. cyclical time encoding:

    1. hour_of_day
    2. half_hour_of_day
    3. week_of_year
    4. month_of_year
    5. day_of_week
  2. numerical weather prediction merging by median

  3. wind speed

  4. wind vector azimuth

  5. meteorological wind direction

  6. lags:

    • Features: all
    • range: [1, 2]

Feature selection

  1. remove all NWP features
  2. variance threshold: threshold==0.8
  3. variance inflation factor: threshold==5

Data cleaning

  1. remove remaining NAs
  2. Get X and y from X_df and y_df

Fitting

  • Estimator = RandomForestRegressor

  • Parameters = Default

  • Fill NAs strategy:

    1. With last valid observation (done within _clean_data method)
    2. By 0 (if first n lines are NAs (done within _clean_data method))