- params distribution:
RandomizedSearchCV
- scorer: CAPE (from Anasse library)
-
cyclical time encoding:
- remove
half_hour_of_day
- remove
day_of_week
- remove
-
lags:
- Features: wind features only
- range:
[1]
-
rollmean:
- Features:
[wind_speed, wind_vector_azimuth, meteorological_wind_direction]
- period:
[3H]
- Features:
model
tomodels
-
Estimator =
RandomForestRegressor
-
Parameters:
- set
random_state=42
instead ofNone
- set
-
Fill
NAs
strategy:- Second fill: By
self.y_median
, i.e the median Production median (instead of 0)
- Second fill: By
- add the submission file submission.csv to the repo
df_to_ts
-
cyclical time encoding:
hour_of_day
half_hour_of_day
week_of_year
month_of_year
day_of_week
-
numerical weather prediction merging by median
-
wind speed
-
wind vector azimuth
-
meteorological wind direction
-
lags:
- Features: all
- range:
[1, 2]
- remove all
NWP
features - variance threshold:
threshold==0.8
- variance inflation factor:
threshold==5
- remove remaining
NAs
- Get
X
andy
fromX_df
andy_df
-
Estimator =
RandomForestRegressor
-
Parameters = Default
-
Fill
NAs
strategy:- With last valid observation (done within
_clean_data
method) - By 0 (if first n lines are
NAs
(done within_clean_data
method))
- With last valid observation (done within