-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfold_funs.R
413 lines (353 loc) · 14 KB
/
fold_funs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#' Cross-Validation Schemes
#'
#' These functions represent different cross-validation schemes that can be
#' used with \pkg{origami}. They should be used as options for the
#' \code{fold_fun} argument to \code{\link{make_folds}}, which will call the
#' requested function specify \code{n}, based on its arguments, and pass any
#' remaining arguments (e.g. \code{V} or \code{pvalidation}) on.
#'
#' @family fold generation functions
#'
#' @param n An integer indicating the number of observations.
#' @param V An integer indicating the number of folds.
#' @param pvalidation A \code{numeric} indicating the proportion of observation
#' to be placed in the validation fold.
#' @param first_window An integer indicating the number of observations in the
#' first training sample.
#' @param window_size An integer indicating the number of observations in each
#' training sample.
#' @param validation_size An integer indicating the number of points in the
#' validation samples; should be equal to the largest forecast horizon.
#' @param gap An integer indicating the number of points not included in the
#' training or validation samples. The default is zero.
#' @param batch An integer indicating increases in the number of time points
#' added to the training set in each iteration of cross-validation. Applicable
#' for larger time-series. The default is one.
#' @param t An integer indicating the total amount of time to consider per
#' time-series sample.
#' @param time An optional vector of integers of time points observed for each
#' subject in the sample.
#' @param id An optional vector of unique identifiers corresponding to the time
#' vector. These can be used to subset the time vector.
#'
#' @importFrom assertthat assert_that
#'
#' @return A list of \code{Fold}s.
#' @name fold_funs
NULL
###############################################################################
#' @rdname fold_funs
#' @export
folds_vfold <- function(n, V = 10L) {
if (n <= V) {
warning("n <= V so using leave-one-out CV")
return(folds_loo(n))
}
folds <- rep(seq_len(V), length = n)
# shuffle folds
folds <- sample(folds)
# generate fold vectors
folds <- lapply(seq_len(V), fold_from_foldvec, folds)
return(folds)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_resubstitution <- function(n) {
list(make_fold(1L, seq_len(n), seq_len(n)))
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_loo <- function(n) {
# folds are trivial here
folds <- seq_len(n)
# generate fold vectors
folds <- lapply(folds, fold_from_foldvec, folds)
return(folds)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_montecarlo <- function(n, V = 1000L, pvalidation = 0.2) {
assertthat::assert_that(pvalidation > 0 && pvalidation < 1)
# calculate training sample size
ntrain <- round((1 - pvalidation) * n)
assertthat::assert_that(ntrain > 1)
folds <- lapply(seq_len(V), fold_montecarlo, n, ntrain, replace = FALSE)
return(folds)
}
# make monte carlo type folds
fold_montecarlo <- function(v, n, ntrain, replace) {
training_set <- sample(n, size = ntrain, replace = replace)
validation_set <- setdiff(seq_len(n), training_set)
make_fold(v, training_set, validation_set)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_bootstrap <- function(n, V = 1000L) {
folds <- lapply(seq_len(V), fold_montecarlo, n, n, replace = TRUE)
return(folds)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_rolling_origin <- function(n, first_window, validation_size, gap = 0L,
batch = 1L) {
last_window <- n - (validation_size + gap)
origins <- seq.int(first_window, last_window, by = batch)
folds <- lapply(seq_along(origins), function(i) {
origin <- origins[i]
make_fold(
v = i, training_set = seq_len(origin),
validation_set = origin + gap + (seq_len(validation_size))
)
})
return(folds)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_rolling_window <- function(n, window_size, validation_size, gap = 0L,
batch = 1L) {
last_window <- n - (validation_size + gap)
origins <- seq.int(window_size, last_window, by = batch)
folds <- lapply(seq_along(origins), function(i) {
origin <- origins[i]
make_fold(
v = i, training_set = (seq_len(window_size)) + (i * batch - batch),
validation_set = origin + gap + (seq_len(validation_size))
)
})
return(folds)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_rolling_origin_pooled <- function(n, t, id = NULL, time = NULL,
first_window, validation_size,
gap = 0L, batch = 1L) {
# check compatibility of ID and time arguments
check_id_and_time(id = id, time = time)
# make IDs the same length as time if only one ID provided
if (length(id) == 1L) {
id <- rep(id, length(time))
}
# make skeleton dataset with IDs and times
if (is.null(id) & is.null(time)) {
dat <- cbind.data.frame(
time = rep(seq(t), n / t),
id = rep(seq(n / t), each = t)
)
} else {
# Index times by id (allows variability in time observed for each subject)
dat <- cbind.data.frame(time = time, id = id)
}
ids <- unique(dat$id)
times <- unique(dat$time)
message(paste("Processing", length(ids), "samples with", t, "time points."))
# establish rolling origin forecast for time-series cross-validation
rolling_origin_skeleton <- folds_rolling_origin(
t, first_window, validation_size, gap, batch
)
folds_rolling_origin <- lapply(rolling_origin_skeleton, function(fold) {
train_times <- training(times)
valid_times <- validation(times)
train_idx <- which(dat$time %in% train_times)
valid_idx <- which(dat$time %in% valid_times)
fold <- make_fold(fold_index(), train_idx, valid_idx)
})
return(folds_rolling_origin)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_rolling_window_pooled <- function(n, t, id = NULL, time = NULL,
window_size, validation_size,
gap = 0L, batch = 1L) {
# check compatibility of ID and time arguments
check_id_and_time(id = id, time = time)
# make IDs the same length as time if only one ID provided
if (length(id) == 1L) {
id <- rep(id, length(time))
}
# make skeleton dataset with IDs and times
if (is.null(id) & is.null(time)) {
dat <- cbind.data.frame(
time = rep(seq(t), n / t),
id = rep(seq(n / t), each = t)
)
} else {
# Index times by id (allows variability in time observed for each subject)
dat <- cbind.data.frame(time = time, id = id)
}
ids <- unique(dat$id)
times <- unique(dat$time)
message(paste("Processing", length(ids), "samples with", t, "time points."))
# establish rolling window forecast for time-series cross-validation
rolling_window_skeleton <- folds_rolling_window(
t, window_size,
validation_size, gap, batch
)
folds_rolling_window <- lapply(rolling_window_skeleton, function(fold) {
train_times <- training(times)
valid_times <- validation(times)
train_idx <- which(dat$time %in% train_times)
valid_idx <- which(dat$time %in% valid_times)
fold <- make_fold(fold_index(), train_idx, valid_idx)
})
return(folds_rolling_window)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_vfold_rolling_origin_pooled <- function(n, t, id = NULL, time = NULL,
V = 10L, first_window,
validation_size, gap = 0L,
batch = 1L) {
# check compatibility of ID and time arguments
check_id_and_time(id = id, time = time)
# make IDs the same length as time if only one ID provided
if (length(id) == 1L) {
id <- rep(id, length(time))
}
# make skeleton dataset with IDs and times
if (is.null(id) & is.null(time)) {
dat <- cbind.data.frame(
time = rep(seq(t), n / t),
id = rep(seq(n / t), each = t)
)
} else {
# Index times by id (allows variability in time observed for each subject)
dat <- cbind.data.frame(time = time, id = id)
}
ids <- unique(dat$id)
times <- unique(dat$time)
message(paste("Processing", length(ids), "samples with", t, "time points."))
# establish V folds for cross-validating ids
Vfold_allocation <- sample(rep(seq_len(V), length = length(ids)))
Vfolds_skeleton <- lapply(seq_len(V), fold_from_foldvec, Vfold_allocation)
# establish rolling origin forecast for time-series cross-validation
rolling_origin_skeleton <- folds_rolling_origin(
t, first_window,
validation_size, gap, batch
)
# Put it all together: gives V-fold and rolling structure
Vfolds_rolling_origin_pooled <- lapply(Vfolds_skeleton, function(vfold) {
# Fold-specific Sample Index
vfold_train_id <- vfold$training_set
vfold_valid_id <- vfold$validation_set
vfold_train_idx <- which(dat$id %in% vfold_train_id)
vfold_valid_idx <- which(dat$id %in% vfold_valid_id)
# Time
folds_rolling_origin <- lapply(rolling_origin_skeleton, function(tfold) {
train_times <- training(times, fold = tfold)
valid_times <- validation(times, fold = tfold)
train_idx <- which(dat$time %in% train_times)
valid_idx <- which(dat$time %in% valid_times)
fold_train_idx <- which(train_idx %in% vfold_train_idx)
fold_valid_idx <- which(valid_idx %in% vfold_valid_idx)
fold_idx <- length(rolling_origin_skeleton) * (vfold$v - 1L) + tfold$v
make_fold(fold_idx, fold_train_idx, fold_valid_idx)
})
})
folds <- unlist(Vfolds_rolling_origin_pooled, recursive = FALSE)
return(folds)
}
###############################################################################
#' @rdname fold_funs
#' @export
folds_vfold_rolling_window_pooled <- function(n, t, id = NULL, time = NULL,
V = 10L, window_size,
validation_size, gap = 0L,
batch = 1L) {
# check compatibility of ID and time arguments
check_id_and_time(id = id, time = time)
# make IDs the same length as time if only one ID provided
if (length(id) == 1) {
id <- rep(id, length(time))
}
# make skeleton dataset with IDs and times
if (is.null(id) & is.null(time)) {
dat <- cbind.data.frame(
time = rep(seq(t), n / t),
id = rep(seq(n / t), each = t)
)
} else {
# Index times by id (allows variability in time observed for each subject)
dat <- cbind.data.frame(time = time, id = id)
}
ids <- unique(dat$id)
times <- unique(dat$time)
message(paste("Processing", length(ids), "samples with", t, "time points."))
# establish V folds for cross-validating ids
Vfold_allocation <- sample(rep(seq_len(V), length = length(ids)))
Vfolds_skeleton <- lapply(seq_len(V), fold_from_foldvec, Vfold_allocation)
# establish rolling origin forecast for time-series cross-validation
rolling_window_skeleton <- folds_rolling_window(
t, window_size,
validation_size, gap, batch
)
# Put it all together: gives V-fold and rolling structure
Vfolds_rolling_window_pooled <- lapply(Vfolds_skeleton, function(vfold) {
# Fold-specific Sample Index
vfold_train_id <- vfold$training_set
vfold_valid_id <- vfold$validation_set
vfold_train_idx <- which(dat$id %in% vfold_train_id)
vfold_valid_idx <- which(dat$id %in% vfold_valid_id)
# Time
folds_rolling_origin <- lapply(rolling_window_skeleton, function(tfold) {
train_times <- training(times, fold = tfold)
valid_times <- validation(times, fold = tfold)
train_idx <- which(dat$time %in% train_times)
valid_idx <- which(dat$time %in% valid_times)
fold_train_idx <- which(train_idx %in% vfold_train_idx)
fold_valid_idx <- which(valid_idx %in% vfold_valid_idx)
fold_idx <- length(rolling_window_skeleton) * (vfold$v - 1L) + tfold$v
make_fold(fold_idx, fold_train_idx, fold_valid_idx)
})
})
folds <- unlist(Vfolds_rolling_window_pooled, recursive = FALSE)
return(folds)
}
###############################################################################
#' Check ID and Time Compatibility
#'
#' @param id An optional vector of unique identifiers corresponding to the time
#' vector. These can be used to subset the time vector.
#' @param time An optional vector of integers of time points observed for each
#' subject in the sample.
#'
#' @importFrom assertthat assert_that
#'
#' @keywords internal
check_id_and_time <- function(id, time) {
# check that both time and ID are provided, or that neither are provided
msg_time_id <- paste(
"Cannot create flexible folds (allow for variability",
"in the amount of time observed for each id) unless",
"both `time` and `id` arguments are provided. Either",
"provide both `time` and `id` or neither."
)
assertthat::assert_that(!(!is.null(id) & is.null(time)) ||
!(is.null(id) & !is.null(time)),
msg = msg_time_id
)
# check that observed times are provided for each ID
msg_time_length <- paste(
"Cannot create flexible folds (allow for",
"variability in the amount of `time` observed for",
"each `id`) unless `time` vector is of same length",
"as `id` vector. `time` is a vector of integers of",
"time points observed for each subject, and `id`",
"is a vector of unique identifiers which",
"correspond to the time vector. The `id` vector",
"is used to subset the `time` vector."
)
if (length(id) > 1) {
assertthat::assert_that(length(id) == length(time),
msg = msg_time_length
)
}
}