-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathMakeTest.m
220 lines (202 loc) · 7.43 KB
/
MakeTest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
function MakeTest(TestMode, Partial)
if nargin < 2,
%OptTol = 1e-5;
Partial = 'RightEye';
end
ws = warning('off','all'); % turn all warnings off
if true,
disp('The warning was turned off!')
warning('Here is a warning that doesn''t have an id.')
end
ConfigPath;
global A;
global Class;
global Test;
global TrainSize;
global Results;
global TestImageSize;
global FirstRidgeRegression;
global ImagePath
ImagePath = '.\Images\EYB\'
FirstRidgeRegression = 1;
%TestImageSize = [96 84];%[27 20];%[83 60];%[41 30];
%--- AR
TestImageSize = [27 20] %[13 10] %[9 6] %[6 5]
if(strcmp(TestMode,'Corruption')==1 | strcmp(TestMode,'Occlusion')==1)
TrainSize = 18;
[A Class Test] = ReadMatrix(TrainSize, 'Corruption');
%DoTest('Corruption');
DoTest('Occlusion');
elseif(strcmp(TestMode,'Partial')==1)
TrainSize = 32;
[A Class Test] = ReadMatrix(TrainSize, 'Partial', Partial);
DoTest('Partial');
elseif(strcmp(TestMode,'Disguise')==1)
TrainSize = 8;
[A Class Test] = ReadMatrixAR(TrainSize, 'Disguise');
DoTestDisguise(0);
elseif(strcmp(TestMode,'DisguisePart')==1)
TrainSize = 8;
[A Class Test] = ReadMatrixPartition(TrainSize, 'Disguise');
%DoTestDisguise(1);
elseif(strcmp(TestMode,'CorruptionPart')==1)
TrainSize = 18;
[A Class Test] = ReadMatrixPartition(TrainSize, 'EYBCorrupt');
%DoTest('Occlusion', 1);
elseif(strcmp(TestMode,'NormalAR')==1)
TrainSize = 7;
%[A Class Test] = ReadMatrix(TrainSize, 'Normal');
[A Class Test] = ReadMatrixAR(TrainSize, 'Normal');
%KSVDTrainDict(TrainSize, 16);
%RandomTrainDict(TrainSize, 16);
%TrainSize = 16;
%DoTest('Normal');
else
TrainSize = 32;
%[A Class Test] = ReadMatrix(TrainSize, 'Normal');
[A Class Test] = ReadMatrix(TrainSize, 'Normal');
%KSVDTrainDict(TrainSize, 16);
%RandomTrainDict(TrainSize, 16);
%TrainSize = 16;
%DoTest('Normal');
end
warning(ws) % restore the warning state
end
function DoTest(TestMode, Partition)
if nargin < 2
Partition = 0;
end
global A;
global Class;
global Test;
global TrainSize;
global Results;
global TestImageSize;
global FirstRidgeRegression;
if(strcmp(TestMode,'Corruption') == 1)
Percent = 0.5:0.1:0.5;
elseif(strcmp(TestMode,'Occlusion') == 1)
Percent = 0.4:0.1:0.4;
else
Percent = 1;
end
SaveName = 'MyTest';
for p=1:size(Percent,2)
disp( sprintf('%s_%s_%d_Percent.mat', SaveName, TestMode, Percent(p)*100));
Acc = 0;
Next = 0;
%for i = 1:size(Test,2);
MinThreshold = 1;
Results = zeros(size(Test,2), 2);
for i = 1:size(Class,2)
for j = 1:Class(1,i)
x = Test(:, Next+j);
%RightClass = fix((i-1)/TestSize)+1;
RightClass = i;
if(strcmp(TestMode,'Normal')==1 | strcmp(TestMode,'Partial')==1)
[ClassX SCI] = Classify(x);
elseif(strcmp(TestMode,'Occlusion')==1)
if(~Partition)
[ClassX SCI] = ClassifyOcclusion(RandomOcclusion(x, Percent(p)));
else
[ClassX SCI] = ClassifyOcclusionPart(RandomOcclusion(x, Percent(p)));
end
elseif(strcmp(TestMode,'Corruption')==1)
[ClassX SCI] = ClassifyOcclusion(RandomCorrupt(x, Percent(p)));
end
Results(Next+j, 1) = ClassX==RightClass;
Results(Next+j, 2) = SCI;
if(ClassX == RightClass)
Acc = Acc+1;
else
if(MinThreshold > SCI)
MinThreshold = SCI;
end
end
Result = sprintf('Image %d RightClass: %d Classified: %d Acc: %d', Next + j, RightClass, ClassX, Acc);
disp(Result)
end
Next = Next+ Class(1,i);
end
Acc = Acc/size(Test,2);
disp(sprintf('Accuracy: %f MinSCI: %f', Acc, MinThreshold));
save(sprintf('%s_%s_%d_Percent.mat', SaveName, TestMode, Percent(p)*100), 'Results');
end
end
function DoTestDisguise(Partition)
global A;
global Class;
global Test;
global TrainSize;
global Results;
global TestImageSize;
global FirstRidgeRegression;
SaveName = 'MyTest_DisguiseAR';
%disp( sprintf('%s_%s_%d_Percent.mat', SaveName, TestMode, Percent(p)*100));
Acc1 = 0;
Acc2 = 0;
Next = 0;
%for i = 1:size(Test,2);
MinThreshold = 1;
Results = zeros(size(Test,2), 2);
for i = 1:size(Class,2)
for j = 1:Class(1,i)
%x = Test(:, Next+j);
%RightClass = fix((i-1)/TestSize)+1;
RightClass = i;
if(~Partition)
[ClassX SCI] = ClassifyOcclusion(Test(:, Next+j));
else
[ClassX SCI] = ClassifyOcclusionPart(Test(:, Next+j));
end
Results(Next+j, 1) = ClassX==RightClass;
Results(Next+j, 2) = SCI;
if(ClassX == RightClass)
if(j<3)
Acc1 = Acc1+1;
else
Acc2 = Acc2+1;
end
else
if(MinThreshold > SCI)
MinThreshold = SCI;
end
end
Result = sprintf('Image %d RightClass: %d Classified: %d Acc1: %d Acc2: %d', Next + j, RightClass, ClassX, Acc1, Acc2);
disp(Result)
end
Next = Next+ Class(1,i);
end
Acc1 = Acc1/(size(Test,2) / 2);
Acc2 = Acc2/(size(Test,2) / 2);
disp(sprintf('Accuracy 1: %f Accuracy 2: %f MinSCI: %f', Acc1, Acc2, MinThreshold));
save(sprintf('%s', SaveName), 'Results');
end
function RandomTrainDict(TrainSize, RepresentingAtomNumber)
global A;
global Class;
Temp = 0;
for i=1:size(Class,2)
Temp = A(:, (i-1)*TrainSize+1:i*TrainSize);
RandomList = randperm(TrainSize);
for j=1:RepresentingAtomNumber
A(:,(i-1)*RepresentingAtomNumber+j) = Temp(:,RandomList(j));
end
end
A = A(:,1: size(Class,2) * RepresentingAtomNumber);
end
function KSVDTrainDict(TrainSize, RepresentingAtomNumber)
global A;
global Class;
param.K = RepresentingAtomNumber*size(Class,2); % number of dictionary elements
param.L = RepresentingAtomNumber;
param.numIteration = 50; % number of iteration to execute the K-SVD algorithm.
param.errorFlag = 0; % decompose signals until a certain error is reached. do not use fix number of coefficients.
%param.errorGoal = sigma;
param.preserveDCAtom = 0;
%%%%%%%% initial dictionary: Dictionary elements %%%%%%%%
param.InitializationMethod = 'DataElements';
param.displayProgress = 1;
disp('Starting to train the dictionary');
[A DictOutput] = KSVD(A,param);
end