-
Notifications
You must be signed in to change notification settings - Fork 295
/
Copy pathbytes.rs
1676 lines (1469 loc) · 47.6 KB
/
bytes.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use core::iter::FromIterator;
use core::mem::{self, ManuallyDrop};
use core::ops::{Deref, RangeBounds};
use core::ptr::NonNull;
use core::{cmp, fmt, hash, ptr, slice, usize};
use alloc::{
alloc::{dealloc, Layout},
borrow::Borrow,
boxed::Box,
string::String,
vec::Vec,
};
use crate::buf::IntoIter;
#[allow(unused)]
use crate::loom::sync::atomic::AtomicMut;
use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use crate::{offset_from, Buf, BytesMut};
/// A cheaply cloneable and sliceable chunk of contiguous memory.
///
/// `Bytes` is an efficient container for storing and operating on contiguous
/// slices of memory. It is intended for use primarily in networking code, but
/// could have applications elsewhere as well.
///
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
/// `Bytes` objects to point to the same underlying memory.
///
/// `Bytes` does not have a single implementation. It is an interface, whose
/// exact behavior is implemented through dynamic dispatch in several underlying
/// implementations of `Bytes`.
///
/// All `Bytes` implementations must fulfill the following requirements:
/// - They are cheaply cloneable and thereby shareable between an unlimited amount
/// of components, for example by modifying a reference count.
/// - Instances can be sliced to refer to a subset of the original buffer.
///
/// ```
/// use bytes::Bytes;
///
/// let mut mem = Bytes::from("Hello world");
/// let a = mem.slice(0..5);
///
/// assert_eq!(a, "Hello");
///
/// let b = mem.split_to(6);
///
/// assert_eq!(mem, "world");
/// assert_eq!(b, "Hello ");
/// ```
///
/// # Memory layout
///
/// The `Bytes` struct itself is fairly small, limited to 4 `usize` fields used
/// to track information about which segment of the underlying memory the
/// `Bytes` handle has access to.
///
/// `Bytes` keeps both a pointer to the shared state containing the full memory
/// slice and a pointer to the start of the region visible by the handle.
/// `Bytes` also tracks the length of its view into the memory.
///
/// # Sharing
///
/// `Bytes` contains a vtable, which allows implementations of `Bytes` to define
/// how sharing/cloning is implemented in detail.
/// When `Bytes::clone()` is called, `Bytes` will call the vtable function for
/// cloning the backing storage in order to share it behind multiple `Bytes`
/// instances.
///
/// For `Bytes` implementations which refer to constant memory (e.g. created
/// via `Bytes::from_static()`) the cloning implementation will be a no-op.
///
/// For `Bytes` implementations which point to a reference counted shared storage
/// (e.g. an `Arc<[u8]>`), sharing will be implemented by increasing the
/// reference count.
///
/// Due to this mechanism, multiple `Bytes` instances may point to the same
/// shared memory region.
/// Each `Bytes` instance can point to different sections within that
/// memory region, and `Bytes` instances may or may not have overlapping views
/// into the memory.
///
/// The following diagram visualizes a scenario where 2 `Bytes` instances make
/// use of an `Arc`-based backing storage, and provide access to different views:
///
/// ```text
///
/// Arc ptrs ┌─────────┐
/// ________________________ / │ Bytes 2 │
/// / └─────────┘
/// / ┌───────────┐ | |
/// |_________/ │ Bytes 1 │ | |
/// | └───────────┘ | |
/// | | | ___/ data | tail
/// | data | tail |/ |
/// v v v v
/// ┌─────┬─────┬───────────┬───────────────┬─────┐
/// │ Arc │ │ │ │ │
/// └─────┴─────┴───────────┴───────────────┴─────┘
/// ```
pub struct Bytes {
ptr: *const u8,
len: usize,
// inlined "trait object"
data: AtomicPtr<()>,
vtable: &'static Vtable,
}
pub(crate) struct Vtable {
/// fn(data, ptr, len)
pub clone: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Bytes,
/// fn(data, ptr, len)
///
/// takes `Bytes` to value
pub to_vec: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Vec<u8>,
pub to_mut: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> BytesMut,
/// fn(data)
pub is_unique: unsafe fn(&AtomicPtr<()>) -> bool,
/// fn(data, ptr, len)
pub drop: unsafe fn(&mut AtomicPtr<()>, *const u8, usize),
}
impl Bytes {
/// Creates a new empty `Bytes`.
///
/// This will not allocate and the returned `Bytes` handle will be empty.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert_eq!(&b[..], b"");
/// ```
#[inline]
#[cfg(not(all(loom, test)))]
pub const fn new() -> Self {
// Make it a named const to work around
// "unsizing casts are not allowed in const fn"
const EMPTY: &[u8] = &[];
Bytes::from_static(EMPTY)
}
/// Creates a new empty `Bytes`.
#[cfg(all(loom, test))]
pub fn new() -> Self {
const EMPTY: &[u8] = &[];
Bytes::from_static(EMPTY)
}
/// Creates a new `Bytes` from a static slice.
///
/// The returned `Bytes` will point directly to the static slice. There is
/// no allocating or copying.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from_static(b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
#[inline]
#[cfg(not(all(loom, test)))]
pub const fn from_static(bytes: &'static [u8]) -> Self {
Bytes {
ptr: bytes.as_ptr(),
len: bytes.len(),
data: AtomicPtr::new(ptr::null_mut()),
vtable: &STATIC_VTABLE,
}
}
/// Creates a new `Bytes` from a static slice.
#[cfg(all(loom, test))]
pub fn from_static(bytes: &'static [u8]) -> Self {
Bytes {
ptr: bytes.as_ptr(),
len: bytes.len(),
data: AtomicPtr::new(ptr::null_mut()),
vtable: &STATIC_VTABLE,
}
}
/// Creates a new `Bytes` with length zero and the given pointer as the address.
fn new_empty_with_ptr(ptr: *const u8) -> Self {
debug_assert!(!ptr.is_null());
// Detach this pointer's provenance from whichever allocation it came from, and reattach it
// to the provenance of the fake ZST [u8;0] at the same address.
let ptr = without_provenance(ptr as usize);
Bytes {
ptr,
len: 0,
data: AtomicPtr::new(ptr::null_mut()),
vtable: &STATIC_VTABLE,
}
}
/// Create [Bytes] with a buffer whose lifetime is controlled
/// via an explicit owner.
///
/// A common use case is to zero-copy construct from mapped memory.
///
/// ```
/// # struct File;
/// #
/// # impl File {
/// # pub fn open(_: &str) -> Result<Self, ()> {
/// # Ok(Self)
/// # }
/// # }
/// #
/// # mod memmap2 {
/// # pub struct Mmap;
/// #
/// # impl Mmap {
/// # pub unsafe fn map(_file: &super::File) -> Result<Self, ()> {
/// # Ok(Self)
/// # }
/// # }
/// #
/// # impl AsRef<[u8]> for Mmap {
/// # fn as_ref(&self) -> &[u8] {
/// # b"buf"
/// # }
/// # }
/// # }
/// use bytes::Bytes;
/// use memmap2::Mmap;
///
/// # fn main() -> Result<(), ()> {
/// let file = File::open("upload_bundle.tar.gz")?;
/// let mmap = unsafe { Mmap::map(&file) }?;
/// let b = Bytes::from_owner(mmap);
/// # Ok(())
/// # }
/// ```
///
/// The `owner` will be transferred to the constructed [Bytes] object, which
/// will ensure it is dropped once all remaining clones of the constructed
/// object are dropped. The owner will then be responsible for dropping the
/// specified region of memory as part of its [Drop] implementation.
///
/// Note that converting [Bytes] constructed from an owner into a [BytesMut]
/// will always create a deep copy of the buffer into newly allocated memory.
pub fn from_owner<T>(owner: T) -> Self
where
T: AsRef<[u8]> + Send + 'static,
{
// Safety & Miri:
// The ownership of `owner` is first transferred to the `Owned` wrapper and `Bytes` object.
// This ensures that the owner is pinned in memory, allowing us to call `.as_ref()` safely
// since the lifetime of the owner is controlled by the lifetime of the new `Bytes` object,
// and the lifetime of the resulting borrowed `&[u8]` matches that of the owner.
// Note that this remains safe so long as we only call `.as_ref()` once.
//
// There are some additional special considerations here:
// * We rely on Bytes's Drop impl to clean up memory should `.as_ref()` panic.
// * Setting the `ptr` and `len` on the bytes object last (after moving the owner to
// Bytes) allows Miri checks to pass since it avoids obtaining the `&[u8]` slice
// from a stack-owned Box.
// More details on this: https://github.com/tokio-rs/bytes/pull/742/#discussion_r1813375863
// and: https://github.com/tokio-rs/bytes/pull/742/#discussion_r1813316032
let owned = Box::into_raw(Box::new(Owned {
lifetime: OwnedLifetime {
ref_cnt: AtomicUsize::new(1),
drop: owned_box_and_drop::<T>,
},
owner,
}));
let mut ret = Bytes {
ptr: NonNull::dangling().as_ptr(),
len: 0,
data: AtomicPtr::new(owned.cast()),
vtable: &OWNED_VTABLE,
};
let buf = unsafe { &*owned }.owner.as_ref();
ret.ptr = buf.as_ptr();
ret.len = buf.len();
ret
}
/// Returns the number of bytes contained in this `Bytes`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub const fn len(&self) -> usize {
self.len
}
/// Returns true if the `Bytes` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert!(b.is_empty());
/// ```
#[inline]
pub const fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns true if this is the only reference to the data and
/// `Into<BytesMut>` would avoid cloning the underlying buffer.
///
/// Always returns false if the data is backed by a [static slice](Bytes::from_static),
/// or an [owner](Bytes::from_owner).
///
/// The result of this method may be invalidated immediately if another
/// thread clones this value while this is being called. Ensure you have
/// unique access to this value (`&mut Bytes`) first if you need to be
/// certain the result is valid (i.e. for safety reasons).
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(vec![1, 2, 3]);
/// assert!(a.is_unique());
/// let b = a.clone();
/// assert!(!a.is_unique());
/// ```
pub fn is_unique(&self) -> bool {
unsafe { (self.vtable.is_unique)(&self.data) }
}
/// Creates `Bytes` instance from slice, by copying it.
pub fn copy_from_slice(data: &[u8]) -> Self {
data.to_vec().into()
}
/// Returns a slice of self for the provided range.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice(2..5);
///
/// assert_eq!(&b[..], b"llo");
/// ```
///
/// # Panics
///
/// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
/// will panic.
pub fn slice(&self, range: impl RangeBounds<usize>) -> Self {
use core::ops::Bound;
let len = self.len();
let begin = match range.start_bound() {
Bound::Included(&n) => n,
Bound::Excluded(&n) => n.checked_add(1).expect("out of range"),
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&n) => n.checked_add(1).expect("out of range"),
Bound::Excluded(&n) => n,
Bound::Unbounded => len,
};
assert!(
begin <= end,
"range start must not be greater than end: {:?} <= {:?}",
begin,
end,
);
assert!(
end <= len,
"range end out of bounds: {:?} <= {:?}",
end,
len,
);
if end == begin {
return Bytes::new();
}
let mut ret = self.clone();
ret.len = end - begin;
ret.ptr = unsafe { ret.ptr.add(begin) };
ret
}
/// Returns a slice of self that is equivalent to the given `subset`.
///
/// When processing a `Bytes` buffer with other tools, one often gets a
/// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
/// This function turns that `&[u8]` into another `Bytes`, as if one had
/// called `self.slice()` with the offsets that correspond to `subset`.
///
/// This operation is `O(1)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let bytes = Bytes::from(&b"012345678"[..]);
/// let as_slice = bytes.as_ref();
/// let subset = &as_slice[2..6];
/// let subslice = bytes.slice_ref(&subset);
/// assert_eq!(&subslice[..], b"2345");
/// ```
///
/// # Panics
///
/// Requires that the given `sub` slice is in fact contained within the
/// `Bytes` buffer; otherwise this function will panic.
pub fn slice_ref(&self, subset: &[u8]) -> Self {
// Empty slice and empty Bytes may have their pointers reset
// so explicitly allow empty slice to be a subslice of any slice.
if subset.is_empty() {
return Bytes::new();
}
let bytes_p = self.as_ptr() as usize;
let bytes_len = self.len();
let sub_p = subset.as_ptr() as usize;
let sub_len = subset.len();
assert!(
sub_p >= bytes_p,
"subset pointer ({:p}) is smaller than self pointer ({:p})",
subset.as_ptr(),
self.as_ptr(),
);
assert!(
sub_p + sub_len <= bytes_p + bytes_len,
"subset is out of bounds: self = ({:p}, {}), subset = ({:p}, {})",
self.as_ptr(),
bytes_len,
subset.as_ptr(),
sub_len,
);
let sub_offset = sub_p - bytes_p;
self.slice(sub_offset..(sub_offset + sub_len))
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
/// contains elements `[at, len)`. It's guaranteed that the memory does not
/// move, that is, the address of `self` does not change, and the address of
/// the returned slice is `at` bytes after that.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_off(5);
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b" world");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
#[must_use = "consider Bytes::truncate if you don't need the other half"]
pub fn split_off(&mut self, at: usize) -> Self {
if at == self.len() {
return Bytes::new_empty_with_ptr(self.ptr.wrapping_add(at));
}
if at == 0 {
return mem::replace(self, Bytes::new_empty_with_ptr(self.ptr));
}
assert!(
at <= self.len(),
"split_off out of bounds: {:?} <= {:?}",
at,
self.len(),
);
let mut ret = self.clone();
self.len = at;
unsafe { ret.inc_start(at) };
ret
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned
/// `Bytes` contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_to(5);
///
/// assert_eq!(&a[..], b" world");
/// assert_eq!(&b[..], b"hello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
#[must_use = "consider Bytes::advance if you don't need the other half"]
pub fn split_to(&mut self, at: usize) -> Self {
if at == self.len() {
let end_ptr = self.ptr.wrapping_add(at);
return mem::replace(self, Bytes::new_empty_with_ptr(end_ptr));
}
if at == 0 {
return Bytes::new_empty_with_ptr(self.ptr);
}
assert!(
at <= self.len(),
"split_to out of bounds: {:?} <= {:?}",
at,
self.len(),
);
let mut ret = self.clone();
unsafe { self.inc_start(at) };
ret.len = at;
ret
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
#[inline]
pub fn truncate(&mut self, len: usize) {
if len < self.len {
// The Vec "promotable" vtables do not store the capacity,
// so we cannot truncate while using this repr. We *have* to
// promote using `split_off` so the capacity can be stored.
if self.vtable as *const Vtable == &PROMOTABLE_EVEN_VTABLE
|| self.vtable as *const Vtable == &PROMOTABLE_ODD_VTABLE
{
drop(self.split_off(len));
} else {
self.len = len;
}
}
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
#[inline]
pub fn clear(&mut self) {
self.truncate(0);
}
/// Try to convert self into `BytesMut`.
///
/// If `self` is unique for the entire original buffer, this will succeed
/// and return a `BytesMut` with the contents of `self` without copying.
/// If `self` is not unique for the entire original buffer, this will fail
/// and return self.
///
/// This will also always fail if the buffer was constructed via either
/// [from_owner](Bytes::from_owner) or [from_static](Bytes::from_static).
///
/// # Examples
///
/// ```
/// use bytes::{Bytes, BytesMut};
///
/// let bytes = Bytes::from(b"hello".to_vec());
/// assert_eq!(bytes.try_into_mut(), Ok(BytesMut::from(&b"hello"[..])));
/// ```
pub fn try_into_mut(self) -> Result<BytesMut, Bytes> {
if self.is_unique() {
Ok(self.into())
} else {
Err(self)
}
}
#[inline]
pub(crate) unsafe fn with_vtable(
ptr: *const u8,
len: usize,
data: AtomicPtr<()>,
vtable: &'static Vtable,
) -> Bytes {
Bytes {
ptr,
len,
data,
vtable,
}
}
// private
#[inline]
fn as_slice(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr, self.len) }
}
#[inline]
unsafe fn inc_start(&mut self, by: usize) {
// should already be asserted, but debug assert for tests
debug_assert!(self.len >= by, "internal: inc_start out of bounds");
self.len -= by;
self.ptr = self.ptr.add(by);
}
}
// Vtable must enforce this behavior
unsafe impl Send for Bytes {}
unsafe impl Sync for Bytes {}
impl Drop for Bytes {
#[inline]
fn drop(&mut self) {
unsafe { (self.vtable.drop)(&mut self.data, self.ptr, self.len) }
}
}
impl Clone for Bytes {
#[inline]
fn clone(&self) -> Bytes {
unsafe { (self.vtable.clone)(&self.data, self.ptr, self.len) }
}
}
impl Buf for Bytes {
#[inline]
fn remaining(&self) -> usize {
self.len()
}
#[inline]
fn chunk(&self) -> &[u8] {
self.as_slice()
}
#[inline]
fn advance(&mut self, cnt: usize) {
assert!(
cnt <= self.len(),
"cannot advance past `remaining`: {:?} <= {:?}",
cnt,
self.len(),
);
unsafe {
self.inc_start(cnt);
}
}
fn copy_to_bytes(&mut self, len: usize) -> Self {
self.split_to(len)
}
}
impl Deref for Bytes {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_slice()
}
}
impl AsRef<[u8]> for Bytes {
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_slice()
}
}
impl hash::Hash for Bytes {
fn hash<H>(&self, state: &mut H)
where
H: hash::Hasher,
{
self.as_slice().hash(state);
}
}
impl Borrow<[u8]> for Bytes {
fn borrow(&self) -> &[u8] {
self.as_slice()
}
}
impl IntoIterator for Bytes {
type Item = u8;
type IntoIter = IntoIter<Bytes>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self)
}
}
impl<'a> IntoIterator for &'a Bytes {
type Item = &'a u8;
type IntoIter = core::slice::Iter<'a, u8>;
fn into_iter(self) -> Self::IntoIter {
self.as_slice().iter()
}
}
impl FromIterator<u8> for Bytes {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
Vec::from_iter(into_iter).into()
}
}
// impl Eq
impl PartialEq for Bytes {
fn eq(&self, other: &Bytes) -> bool {
self.as_slice() == other.as_slice()
}
}
impl PartialOrd for Bytes {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
impl Ord for Bytes {
fn cmp(&self, other: &Bytes) -> cmp::Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl Eq for Bytes {}
impl PartialEq<[u8]> for Bytes {
fn eq(&self, other: &[u8]) -> bool {
self.as_slice() == other
}
}
impl PartialOrd<[u8]> for Bytes {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other)
}
}
impl PartialEq<Bytes> for [u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for [u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<str> for Bytes {
fn eq(&self, other: &str) -> bool {
self.as_slice() == other.as_bytes()
}
}
impl PartialOrd<str> for Bytes {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl PartialEq<Vec<u8>> for Bytes {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == other[..]
}
}
impl PartialOrd<Vec<u8>> for Bytes {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(&other[..])
}
}
impl PartialEq<Bytes> for Vec<u8> {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for Vec<u8> {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<String> for Bytes {
fn eq(&self, other: &String) -> bool {
*self == other[..]
}
}
impl PartialOrd<String> for Bytes {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
self.as_slice().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for String {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for String {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl PartialEq<Bytes> for &[u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for &[u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
}
}
impl PartialEq<Bytes> for &str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for &str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
<[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
where
Bytes: PartialEq<T>,
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
where
Bytes: PartialOrd<T>,
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(&**other)
}
}
// impl From
impl Default for Bytes {
#[inline]
fn default() -> Bytes {
Bytes::new()
}
}
impl From<&'static [u8]> for Bytes {
fn from(slice: &'static [u8]) -> Bytes {
Bytes::from_static(slice)
}
}
impl From<&'static str> for Bytes {
fn from(slice: &'static str) -> Bytes {
Bytes::from_static(slice.as_bytes())
}
}
impl From<Vec<u8>> for Bytes {
fn from(vec: Vec<u8>) -> Bytes {
let mut vec = ManuallyDrop::new(vec);
let ptr = vec.as_mut_ptr();
let len = vec.len();
let cap = vec.capacity();
// Avoid an extra allocation if possible.
if len == cap {
let vec = ManuallyDrop::into_inner(vec);
return Bytes::from(vec.into_boxed_slice());
}
let shared = Box::new(Shared {
buf: ptr,
cap,
ref_cnt: AtomicUsize::new(1),
});
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert!(
0 == (shared as usize & KIND_MASK),
"internal: Box<Shared> should have an aligned pointer",
);
Bytes {
ptr,
len,
data: AtomicPtr::new(shared as _),
vtable: &SHARED_VTABLE,
}
}
}
impl From<Box<[u8]>> for Bytes {
fn from(slice: Box<[u8]>) -> Bytes {