-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
254 lines (243 loc) · 15.6 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# this code come from: A2_slovenia_llr_inferenceSimilarity_seed2.py
import torch
import numpy as np
import os
import json
import pandas as pd
import argparse
import time
from pathlib import Path
import sys
import nibabel as nib
from tqdm import tqdm
from collections import defaultdict
import itertools
from functools import partial
import multiprocessing
import torchvision
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
import torch.optim as optim
from monai.losses.dice import DiceLoss
from monai.data.nifti_saver import NiftiSaver
from inference import inference_ms, inference_tumour, inference_crossmoda
from src.utils import to_var_gpu
from src.utils import apply_transform
from src.utils import dice_soft_loss
from src.utils import generate_affine
from src.utils import loop_iterable
from src.utils import ss_loss
from src.utils import non_geometric_augmentations
from src.utils import load_default_config
from src.utils import update_ema_variables
from src.utils import bland_altman_loss
from src.utils import save_images
from src.networks import Destilation_student_matchingInstance, SplitHeadModel, GeneratorUnet, get_fpn
from src.networks import DiscriminatorDomain, DiscriminatorCycleGAN, DiscriminatorCycleGANSimple
from src.dataset import SliceDataset, WholeVolumeDataset, SliceDatasetTumour,\
WholeVolumeDatasetTumour, get_monai_slice_dataset, infer_on_subject
from src.paths import results_paths, ms_path, model_saving_paths, tensorboard_paths, inference_paths
from src.cyclegan import CycleganModel
from src.mean_teacher import MeanTeacherModel
from src.supervised_joint import SupervisedJointModel
from src.supervised import SupervisedModel
from src.ada import ADAModel
from src.icmsc import ICMSCModel
from src.cycada import CycadaModel
def train(args, model,
source_train_slice_dataset, source_val_dataset, source_test_dataset,
target_train_slice_dataset, source_val_slice_dataset, target_val_slice_dataset,
target_val_dataset, target_test_dataset):
source_dl = loop_iterable(torch.utils.data.DataLoader(source_train_slice_dataset,
batch_size=args.batch_size, shuffle=True))
target_dl = loop_iterable(torch.utils.data.DataLoader(target_train_slice_dataset,
batch_size=args.batch_size, shuffle=True))
source_val_slice_dl = loop_iterable(torch.utils.data.DataLoader(source_val_slice_dataset,
batch_size=args.batch_size, shuffle=True))
target_val_slice_dl = loop_iterable(torch.utils.data.DataLoader(target_val_slice_dataset,
batch_size=args.batch_size, shuffle=True))
epoch = -1
iteration = 0
is_training = True
model.initialise()
try:
while is_training:
epoch += 1
start_time = time.time()
train_mini_batch_indices = np.arange(0, len(source_train_slice_dataset), args.batch_size)
torch.manual_seed(epoch)
model.epoch_reset()
# Training loop
with tqdm(total=len(train_mini_batch_indices), file=sys.stdout) as pbar:
for indb, _ in enumerate(train_mini_batch_indices):
pbar.update(1)
iteration = epoch * len(train_mini_batch_indices) + indb
model.iterations = iteration
postfix_dict, tensorboard_dict = model.training_loop(source_dl, target_dl)
pbar.set_postfix(postfix_dict)
if iteration % args.tensorboard_every_n == 0:
model.tensorboard_logging(postfix_dict=postfix_dict, tensorboard_dict=tensorboard_dict, split='train')
if iteration % args.save_every_n == 0:
model.save()
if iteration >= args.iterations:
print('Training ending!')
print('SAVING MODEL')
model.save()
is_training = False
break
# Validation loop
print('Validation!')
val_mini_batch_indices = np.arange(0, len(source_val_slice_dataset), args.batch_size)
running_postfix_dict = {}
model.epoch_reset()
with tqdm(total=len(val_mini_batch_indices), file=sys.stdout) as pbar:
for indb, _ in enumerate(val_mini_batch_indices):
pbar.update(1)
postfix_dict, tensorboard_dict = model.validation_loop(source_dl, target_dl)
if not running_postfix_dict:
running_postfix_dict = postfix_dict
else:
# Update postfix dict using moving average formula
for key, postfix_value in postfix_dict.items():
running_postfix_dict[key] = (postfix_value + indb*running_postfix_dict[key] )/ (indb + 1)
pbar.set_postfix(running_postfix_dict)
model.tensorboard_logging(postfix_dict=running_postfix_dict,
tensorboard_dict=tensorboard_dict, split='val')
end_time = time.time()
time_epoch = (end_time - start_time) / 60
print('Time: {}'.format(time_epoch))
except KeyboardInterrupt:
print('Interrupted training at iteration {}'.format(iteration))
print('SAVING MODEL')
model.save()
model.writer.close()
def infer(args, model, inference_dir):
dataset_split_df = pd.read_csv(args.inference_split, names=['subject_id', 'split'])
# data_dir = ms_path[os.uname().nodename][args.target] # Target data
data_dir = '/data2/tom/crossmoda/target_validation/slices'
flair_filenames = os.listdir(os.path.join(data_dir, 'flair'))
subject_ids = [x.split('_slice')[0] for x in flair_filenames]
slice_idx_arr = [int(x.split('_')[3].replace('.nii.gz', '')) for x in flair_filenames]
label_paths = [os.path.join(data_dir, 'labels', x.replace('FLAIR', 'wmh')) for x in flair_filenames]
flair_paths = [os.path.join(data_dir, 'flair', x) for x in flair_filenames]
files_df = pd.DataFrame(
data=[(subj, slice_idx, fp, lp) for subj, slice_idx, fp, lp in zip(subject_ids, slice_idx_arr,
label_paths, flair_paths)],
columns=['subject_id', 'slice_index', 'label_path', 'flair_path']
)
# Need to loop over subject ids
subject_ids = files_df.subject_id.unique()
with tqdm(total=len(subject_ids), file=sys.stdout) as pbar:
for subject_id in subject_ids:
output_path = str(Path(inference_dir) / subject_id)
print(output_path)
whole_volume_path = str(Path(data_dir).parent / 'whole' / 'flair' / (subject_id + '.nii.gz'))
print(whole_volume_path)
infer_on_subject(model, output_path, whole_volume_path, files_df, subject_id, batch_size=10)
pbar.update(1)
def main(args):
band = 'refactor_{}_{}_{}'.format(args.method, args.source, args.target)
assert args.task in ['ms', 'tumour', 'crossmoda']
# Directory paths
models_folder = model_saving_paths[os.uname().nodename]
results_folder = results_paths[os.uname().nodename]
tensorboard_folder = tensorboard_paths[os.uname().nodename]
inference_folder = inference_paths[os.uname().nodename]
run_name='{}_{}'.format(band, args.tag)
model_factory = {'cyclegan': CycleganModel, 'ada': ADAModel, 'mean_teacher': MeanTeacherModel,
'supervised_joint': SupervisedJointModel, 'supervised': SupervisedModel,
'icmsc': ICMSCModel, 'cycada': CycadaModel}
slice_dataset = {'ms': SliceDataset, 'crossmoda': get_monai_slice_dataset, 'tumour': SliceDatasetTumour}[args.task]
whole_volume_dataset = {'ms': WholeVolumeDataset, 'crossmoda': WholeVolumeDataset, 'tumour': WholeVolumeDatasetTumour}[args.task]
source_train_slice_dataset = slice_dataset(ms_path[os.uname().nodename][args.source],
exclude_slices = list(range(70,192)) + list(range(20)),
paddtarget=args.paddtarget, split='train', tumour_only=bool(args.tumour_only),
slice_selection_method='mask', dataset_split_csv=args.source_split)
source_val_slice_dataset = slice_dataset(ms_path[os.uname().nodename][args.source],
paddtarget=args.paddtarget, split='val', tumour_only=bool(args.tumour_only),
slice_selection_method='mask', dataset_split_csv=args.source_split)
source_val_dataset = whole_volume_dataset(ms_path[os.uname().nodename][args.source + '_whole'], split='val',
tumour_only=bool(args.tumour_only), paddtarget=args.paddtarget,
dataset_split_csv=args.source_split)
source_test_dataset = whole_volume_dataset(ms_path[os.uname().nodename][args.source + '_whole'], split='test',
tumour_only=bool(args.tumour_only), paddtarget=args.paddtarget,
dataset_split_csv=args.source_split)
target_train_slice_dataset = slice_dataset(ms_path[os.uname().nodename][args.target],
paddtarget=args.paddtarget, split='train',
exclude_slices = list(range(70,192)) + list(range(20)),
slice_selection_method='mask', dataset_split_csv=args.target_split)
target_val_slice_dataset = slice_dataset(ms_path[os.uname().nodename][args.target],
paddtarget=args.paddtarget, split='val',
slice_selection_method='mask', dataset_split_csv=args.target_split)
target_train_whole_vol_dataset = whole_volume_dataset(ms_path[os.uname().nodename][args.target + '_whole'],
split='train', paddtarget=args.paddtarget,
dataset_split_csv=args.target_split)
target_val_dataset = whole_volume_dataset(ms_path[os.uname().nodename][args.target + '_whole'], split='val',
paddtarget=args.paddtarget,
dataset_split_csv=args.target_split)
writer = SummaryWriter(tensorboard_folder+'/{}/{}_{}'.format(args.task, band, args.tag))
inference_func = {'ms': inference_ms, 'tumour': inference_tumour, 'crossmoda': inference_crossmoda}[args.task]
# save_images = partial(save_images, k=1 if args.task == 'tumour' else 3)
model = model_factory[args.method](cf=args, writer=writer, models_folder=models_folder,
results_folder=results_folder, tensorboard_folder=tensorboard_folder, run_name=run_name)
if args.checkpoint != "null":
print('Loading model from checkpoint')
print(args.checkpoint)
model.load(args.checkpoint)
if args.infer:
infer(args=args, model=model, inference_dir=os.path.join(inference_folder, run_name))
else:
train(args=args, model=model, source_val_slice_dataset=source_val_slice_dataset, target_val_slice_dataset=target_val_slice_dataset,
source_train_slice_dataset=source_train_slice_dataset,
target_train_slice_dataset=target_train_slice_dataset,
source_test_dataset=source_test_dataset, target_test_dataset=target_train_whole_vol_dataset, # hack
source_val_dataset=source_val_dataset, target_val_dataset=target_val_dataset)
if __name__ == '__main__':
# Parameters
parser = argparse.ArgumentParser(description='MICCAI2020')
parser.add_argument('--lr', type=float, metavar='LR', help='learning rate (default: (1e-4))')
parser.add_argument('--labels', type=int, metavar='LABELS', help='number of labels (default: 1)')
parser.add_argument('--channels', type=int, metavar='CHANNELS', help='number of channels (default: 1)')
parser.add_argument('--iterations', type=int, metavar='ITERATIONS', help='number of iterations to train')
parser.add_argument('--diceThs', type=float, metavar='DICETHS', help='Threshold for dice estimation')
parser.add_argument('--batch_size', type=int, metavar='BATCHSIZE', help='batch size')
parser.add_argument('--paddsource', type=int, metavar='PADD', help='PADD')
parser.add_argument('--paddtarget', type=int, metavar='PADD', help='PADD')
# parser.add_argument('--SaveTrLoss', type = int , )
parser.add_argument('--affine_rot_degree', type=float, metavar='AffineRot', help='Affine Rotations parameter')
parser.add_argument('--affine_scale', type=float, metavar='AffineScale', help='Affine scale parameter')
parser.add_argument('--affine_shearing', type=float, metavar='AffineShearing',
help='Affine shearing scale')
parser.add_argument('--loss', type=str, metavar='LOSS', help='Loss, dice or bland_altman')
parser.add_argument('--iterations_adapt', type=int, metavar='ITERATIONSADAPT',
help='This is the iteration count where the adaptation start')
parser.add_argument('--thssaving', type=float, metavar='THSSAVING', help='ths to save model')
parser.add_argument('--thstesting', type=float, metavar='THSTESTING', help='ths to select testing slices')
parser.add_argument('--alpha_lweights', type=float, metavar='ALPHA', help='alpha weights the pc loss')
parser.add_argument('--beta_lweights', type=float, metavar='BETA', help='beta weights the adversarial loss')
parser.add_argument('--source', type=str, metavar='Data', help='data name')
parser.add_argument('--target', type=str, metavar='Data', help='data name')
parser.add_argument('--method', type=str, metavar='METHODS', help='method name')
parser.add_argument('--tag', type=str, metavar='TAG', help='Experiment tag')
parser.add_argument('--task', type=str, metavar='INPUT', help='wmh or tumour')
parser.add_argument('--source_split', type=str, help='path to dataset_split.csv for source')
parser.add_argument('--target_split', type=str, help='path to dataset_split.csv for target')
parser.add_argument('--inference_split', type=str, help='path to dataset_split.csv for inference (split column is ignored)')
parser.add_argument('--save_every_n', type=int)
parser.add_argument('--tensorboard_every_n', type=int)
parser.add_argument('--use_fixmatch', type=int)
parser.add_argument('--config', type=str, help='path to json file, will override all other config')
parser.add_argument('--discriminator_complexity', type=float,
help='8*complexity gives the number of initial layers')
parser.add_argument('--checkpoint', type=str, help='path to checkpoint')
parser.add_argument('--infer', type=int, help='0 if training else 1')
parser.add_argument('--tumour_only', type=int, help='1 if tumour only labels to be used else 0')
args = parser.parse_args()
config = load_default_config(args.task) if args.config is None else json.load(open(args.config, 'r'))
arg_dict = vars(args)
for key, value in arg_dict.items():
arg_dict[key] = config[key] if value is None else value
# hostname_dir = {'dgx1-1': '/raid/tomvars', 'pretzel': '/raid/tom', 'bd0795ec38f7': '/data2/tom'}
# if args.checkpoint != "null" and args.checkpoint is not None:
# args.checkpoint = args.checkpoint.replace('/raid/tomvars', hostname_dir[os.uname().nodename])
main(args=args)