-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
226 lines (187 loc) · 7.49 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
Train a diffusion model on images.
"""
# import gradio as gr
import os
import glob
import argparse
from pathlib import Path
import cv2
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch as th
from einops import rearrange
from pretrained_diffusion import dist_util, logger
from torchvision.utils import make_grid
from pretrained_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from pretrained_diffusion.image_datasets_sketch import get_tensor
from pretrained_diffusion.train_util import TrainLoop
from pretrained_diffusion.glide_util import sample
def merge_encoder_decoder_ckpt(encoder_ckpt, decoder_ckpt):
encoder_state_dict = th.load(encoder_ckpt)
decoder_state_dict = th.load(decoder_ckpt)
return {
**{f"encoder.{k}": v for k, v in encoder_state_dict.items()},
**{f"decoder.{k}": v for k, v in decoder_state_dict.items()},
}
def run(mode):
parser, parser_up = create_argparser()
args = parser.parse_args()
args_up = parser_up.parse_args()
dist_util.setup_dist()
if mode == 'sketch':
args.mode = 'coco-edge'
args_up.mode = 'coco-edge'
# args.model_path = '/content/test.pt' # '/content/PITI/ckpt/base_edge.pt'
# args.sr_model_path = './ckpt/upsample_edge.pt'
elif mode == 'mask':
args.mode = 'coco'
args_up.mode = 'coco'
args.model_path = './ckpt/base_mask.pt'
args.sr_model_path = './ckpt/upsample_mask.pt'
sample_step = args.sample_step
sample_c = args.sample_c
up_c = args.up_c
print(f"sample step: {sample_step}")
print(f"sample_c: {sample_c}")
print(f"up_c: {up_c}")
options=args_to_dict(args, model_and_diffusion_defaults(0.).keys())
model, diffusion = create_model_and_diffusion(**options)
options_up=args_to_dict(args_up, model_and_diffusion_defaults(True).keys())
model_up, diffusion_up = create_model_and_diffusion(**options_up)
if args.model_path:
print('loading model')
# model_ckpt = dist_util.load_state_dict(args.model_path, map_location="cpu")
model_ckpt = merge_encoder_decoder_ckpt(args.encoder_ckpt, args.decoder_ckpt)
model.load_state_dict(model_ckpt, strict=True)
if args.sr_model_path:
print('loading sr model')
model_ckpt2 = dist_util.load_state_dict(args.sr_model_path, map_location="cpu")
model_up.load_state_dict(model_ckpt2, strict=True)
model.to(dist_util.dev())
model_up.to(dist_util.dev())
model.eval()
model_up.eval()
########### dataset
Path(args.save_dir).mkdir(exist_ok=True, parents=True)
if '*' in args.image:
images = sorted(glob.glob(args.image))
else:
images = [args.image]
for image in tqdm(images):
pil_image = Image.open(image)
label_pil = pil_image.convert('L').resize((256, 256), Image.NEAREST)
im_dist = cv2.distanceTransform(255-np.array(label_pil), cv2.DIST_L1, 3)
im_dist = np.clip((im_dist) , 0, 255).astype(np.uint8)
im_dist = Image.fromarray(im_dist).convert('RGB')
label_tensor = get_tensor()(im_dist)[:1]
data_dict = {'ref':label_tensor.unsqueeze(0).repeat(args.num_samples, 1, 1, 1)}
print('sampling...')
sampled_imgs = []
grid_imgs = []
img_id = 0
while (True):
if img_id >= args.num_samples:
break
model_kwargs = data_dict
with th.no_grad():
samples_lr =sample(
glide_model= model,
glide_options= options,
side_x= 64,
side_y= 64,
prompt=model_kwargs,
batch_size= args.num_samples,
guidance_scale=sample_c,
device=dist_util.dev(),
prediction_respacing= str(sample_step),
upsample_enabled= False,
upsample_temp=0.997,
mode = args.mode,
)
samples_lr = samples_lr.clamp(-1, 1)
tmp = (127.5*(samples_lr + 1.0)).int()
model_kwargs['low_res'] = tmp / 127.5 - 1.
samples_hr =sample(
glide_model= model_up,
glide_options= options_up,
side_x=256,
side_y=256,
prompt=model_kwargs,
batch_size=args.num_samples,
guidance_scale=up_c,
device=dist_util.dev(),
prediction_respacing= "fast27",
upsample_enabled=True,
upsample_temp=0.997,
mode = args.mode,
)
for hr in samples_hr:
hr = 255. * rearrange((hr.cpu().numpy()+1.0)*0.5, 'c h w -> h w c')
sample_img = Image.fromarray(hr.astype(np.uint8))
save_path = os.path.join(args.save_dir, os.path.basename(image).split('.')[0] + f"_{img_id}.jpg")
sample_img.save(save_path)
# sampled_imgs.append(sample_img)
img_id += 1
# grid_imgs.append(samples_hr)
# # high resolution
# grid = th.stack(grid_imgs, 0)
# grid = rearrange(grid, 'n b c h w -> (n b) c h w')
# grid = make_grid(grid, nrow=2)
# grid = 255. * rearrange((grid+1.0)*0.5, 'c h w -> h w c').cpu().numpy()
# save_path = os.path.join(args.save_dir, os.path.basename(image))
# Image.fromarray(grid.astype(np.uint8)).save(save_path)
# print()
# low resolution
# grid_low_res = make_grid(tmp, nrow=2)
# save_path = os.path.join(args.save_dir, os.path.basename(image).split(".")[0] + "_low_res.jpg")
# Image.fromarray(grid_low_res.astype(np.uint8)).save(save_path)
def create_argparser():
defaults = dict(
data_dir="",
val_data_dir="",
model_path="./base_edge.pt",
sr_model_path="./upsample_edge.pt",
encoder_path="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=2,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=100,
save_interval=20000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
sample_c=1.,
up_c = 1,
sample_step=100,
sample_respacing="100",
uncond_p=0.2,
num_samples=3,
finetune_decoder = False,
mode = '',
image = "path/to/image",
encoder_ckpt = "path/to_encoder/ckpt",
decoder_ckpt = "path/to/decoder/ckpt",
save_dir = "/path/to/folder",
sr_model = "/path/to/sr_model"
)
defaults_up = defaults
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
print(parser)
defaults_up.update(model_and_diffusion_defaults(True))
parser_up = argparse.ArgumentParser()
add_dict_to_argparser(parser_up, defaults_up)
return parser, parser_up
run(mode="sketch")