-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathk-odd-powerful_numbers_in_range.sf
77 lines (56 loc) · 1.81 KB
/
k-odd-powerful_numbers_in_range.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/ruby
# Author: Trizen
# Date: 28 February 2021
# Edit: 23 February 2024
# https://github.com/trizen
# Fast recursive algorithm for generating all the odd k-powerful numbers in a given range [a,b].
# A positive integer n is considered k-powerful, if for every prime p that divides n, so does p^k.
# Example:
# 2-powerful = a^2 * b^3, for a,b >= 1
# 3-powerful = a^3 * b^4 * c^5, for a,b,c >= 1
# 4-powerful = a^4 * b^5 * c^6 * d^7, for a,b,c,d >= 1
# See also:
# https://oeis.org/A062739
func odd_powerful_numbers(A, B, k=2) {
var odd_powerful = []
func (m,r) {
var from = 1
var upto = iroot(idiv(B, m), r)
if (r <= k) {
if (A > m) {
# Optimization by Dana Jacobsen (from Math::Prime::Util::PP)
with (idiv_ceil(A,m)) {|l|
if ((l >> r) == 0) {
from = 2
}
else {
from = l.iroot(r)
from++ if (ipow(from, r) != l)
}
}
}
return nil if (from > upto)
for j in (from .. upto) {
odd_powerful << (m * ipow(j, r)) if j.is_odd
}
return nil
}
for j in (from .. upto) {
j.is_even && next
j.is_coprime(m) || next
j.is_squarefree || next
__FUNC__(m * ipow(j, r), r-1)
}
}(1, 2*k - 1)
odd_powerful.sort
}
var a = 1e5.irand
var b = 1e7.irand
for k in (2..5) {
say "Testing: k = #{k}"
assert_eq(
odd_powerful_numbers(a, b, k),
k.powerful(a, b).grep{.is_odd}
)
}
say odd_powerful_numbers(1e6 - 2e4, 1e6, 2) #=> [982081, 984987, 985527, 986049, 990025, 990125, 994009, 998001]