-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpell_factorization.sf
69 lines (52 loc) · 1.41 KB
/
pell_factorization.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 03 February 2019
# https://github.com/trizen
# A simple integer factorization method, using square root convergents.
# Similar to solving the Pell equation:
# x^2 - d*y^2 = 1, where `d` is known.
# See also:
# https://en.wikipedia.org/wiki/Pell%27s_equation
func pell_factorization(n) {
var x = n.isqrt
var y = x
var z = 1
var r = 2*x
var w = r
return n if n.is_prime
return x if n.is_square
var (f1, f2) = (1, x)
loop {
y = (r*z - y)
z = idiv(n - y*y, z)
r = idiv_round(x + y, z)
(f1, f2) = (f2, addmod(mulmod(r, f2, n), f1, n))
var u = f1
var v = mulmod(u, u, n)
if (v > w) {
v = (n - v)
}
if (v.is_square) {
var g = gcd(u - v.isqrt, n)
if (g.is_between(2, n-1)) {
return g
}
}
return n if (z.abs == 1)
}
}
for n in (1..10) {
var n = 2.of { 15.random_nbit_prime }.prod
say ("PellFactor(#{n}) = ", pell_factorization(n))
}
__END__
PellFactor(710181718559) = 783259
PellFactor(601895275799) = 844757
PellFactor(702178804001) = 954269
PellFactor(685012691669) = 988861
PellFactor(627646131001) = 687019
PellFactor(616399591183) = 817889
PellFactor(919492672157) = 997511
PellFactor(472787769719) = 641929
PellFactor(669324919663) = 756319
PellFactor(888796269331) = 898819