-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve_quadratic_diophantine_reciprocals.sf
171 lines (129 loc) · 3.76 KB
/
solve_quadratic_diophantine_reciprocals.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 27 February 2021
# https://github.com/trizen
# Algorithm for finding primitve solutions (x,y,z) with 1 <= x,y,z <= N and x <= y, to the Diophantine reciprocal equation:
# 1/x^2 + 1/y^2 = k/z^2
# A solution (x,y,z) is a primitive solution if gcd(x,y,z) = 1.
# It is easy to see that:
# (x^2 + y^2)/k = v^4, for some integer v.
# Multiplying both sides by k, we have:
# x^2 + y^2 = k * v^4
# By finding integer solutions (x,y) to the above Diophantine equation, we can then compute `z` as:
# z = sqrt((x^2 * y^2 * k)/(x^2 + y^2))
# = sqrt((x^2 * y^2) / v^4)
# We need to iterate over 1 <= v <= sqrt(N).
# See also:
# https://projecteuler.net/problem=748
func sum_of_two_squares_solutions(n) is cached {
n == 0 && return [[0, 0]]
var prod1 = 1
var prod2 = 1
var prime_powers = []
for p,e in (n.factor_exp) {
if (p % 4 == 3) { # p = 3 (mod 4)
e.is_even || return [] # power must be even
prod2 *= p**(e >> 1)
}
elsif (p == 2) { # p = 2
if (e.is_even) { # power is even
prod2 *= p**(e >> 1)
}
else { # power is odd
prod1 *= p
prod2 *= p**((e - 1) >> 1)
prime_powers.append([p, 1])
}
}
else { # p = 1 (mod 4)
prod1 *= p**e
prime_powers.append([p, e])
}
}
prod1 == 1 && return [[prod2, 0]]
prod1 == 2 && return [[prod2, prod2]]
# All the solutions to the congruence: x^2 = -1 (mod prod1)
var square_roots = gather {
gather {
for p,e in (prime_powers) {
var pp = p**e
var r = sqrtmod(-1, pp)
take([[r, pp], [pp - r, pp]])
}
}.cartesian { |*a|
take(Math.chinese(a...))
}
}
var solutions = []
for r in (square_roots) {
var s = r
var q = prod1
while (s*s > prod1) {
(s, q) = (q % s, s)
}
solutions.append([prod2 * s, prod2 * (q % s)])
}
for p,e in (prime_powers) {
for (var i = e%2; i < e; i += 2) {
var sq = p**((e - i) >> 1)
var pp = p**(e - i)
solutions += (
__FUNC__(prod1 / pp).map { |pair|
pair.map {|r| sq * prod2 * r }
}
)
}
}
solutions.map {|pair| pair.sort } \
.uniq_by {|pair| pair[0] } \
.sort_by {|pair| pair[0] }
}
func S(N, k) {
var solutions = []
for v in (1 .. N.isqrt) {
for x,y in (sum_of_two_squares_solutions(k * v**4)) {
y <= N || next
var z = (x*x * y*y)/(v**4)
if (z.is_square) {
z = z.isqrt
z <= N || next
if (gcd(x,y,z) == 1) {
assert_eq(1/x**2 + 1/y**2, k/z**2)
solutions << [x,y,z]
}
}
}
}
solutions.sort
}
var N = 10000
var k = 5
say <<"EOT"
:: Primitve solutions (x,y,z) with 1 <= x,y,z <= #{N} and x <= y, to equation:
1/x^2 + 1/y^2 = #{k}/z^2
EOT
for x,y,z in (S(N,k)) {
say "(#{x}, #{y}, #{z})"
}
__END__
:: Primitve solutions (x,y,z) with 1 <= x,y,z <= 10000 and x <= y, to equation:
1/x^2 + 1/y^2 = 5/z^2
(1, 2, 2)
(10, 55, 22)
(17, 646, 38)
(26, 377, 58)
(247, 286, 418)
(374, 527, 682)
(407, 3034, 902)
(551, 1798, 1178)
(583, 6254, 1298)
(638, 1769, 1342)
(902, 3649, 1958)
(950, 1025, 1558)
(2015, 9230, 4402)
(2146, 2183, 3422)
(2318, 7991, 4978)
(2378, 2911, 4118)
(3286, 5353, 6262)
(5002, 6649, 8938)
(5135, 7930, 9638)