-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum_of_squares_function_identities.sf
234 lines (184 loc) · 7.74 KB
/
sum_of_squares_function_identities.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/ruby
# Author: Daniel "Trizen" Șuteu
# Date: 12 August 2021
# https://github.com/trizen
# Count the number of ways or representing n as a sum of k squares (function known as: r_k(n)).
# See also:
# https://en.wikipedia.org/wiki/Sum_of_squares_function
# OEIS sequences:
# https://oeis.org/A004018 -- Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).
# https://oeis.org/A005875 -- Theta series of simple cubic lattice; also number of ways of writing a nonnegative integer n as a sum of 3 squares (zero being allowed).
# https://oeis.org/A000118 -- Number of ways of writing n as a sum of 4 squares; also theta series of lattice Z^4.
# https://oeis.org/A000132 -- Number of ways of writing n as a sum of 5 squares.
# https://oeis.org/A000141 -- Number of ways of writing n as a sum of 6 squares.
# https://oeis.org/A008451 -- Number of ways of writing n as a sum of 7 squares.
func r2(n) { # n must be odd
4*n.factor_prod {|p,e|
p.is_congruent(3, 4) ? (e.is_even ? 1 : return 0) : (e+1)
}
}
func r6_a(f) {
f.prod_2d {|p,e|
((p**2)**(e+1) * ((p.is_congruent(1,4) || e.is_odd) ? 1 : -1) - 1) / (p**2 * (p.is_congruent(1,4) ? 1 : -1) - 1)
}
}
func r6_b(f) {
f.prod_2d {|p,e|
((p**2)**(e+1) - ((p.is_congruent(1,4) || e.is_odd) ? 1 : -1)) / (p**2 - (p.is_congruent(1,4) ? 1 : -1))
}
}
func r10_a(f) {
# a(2^e) = 1
# a(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4)
# a(p^e) = (1 - (-p^4)^(e+1)) / (1 + p^4) if p == 3 (mod 4)
f.prod_2d {|p,e|
p.is_congruent(1,4) ? (((p**4)**(e+1) - 1) / (p**4 - 1)) : (((p**4)**(e+1) * (-1)**e + 1) / (p**4 + 1))
}
}
func r10_b(f) {
# a(2^e) = 16^e
# a(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4)
# a(p^e) = ((p^4)^(e+1) - (-1)^(e+1)) / (p^4 + 1) if p == 3 (mod 4)
f.prod_2d {|p,e|
p.is_congruent(1,4) ? (((p**4)**(e+1) - 1) / (p**4 - 1)) : (((p**4)**(e+1) - (-1)**(e+1)) / (p**4 + 1))
}
}
func r10_d(p) {
# 2 * Re( (x + i*y)^4 ) and p = x^2 + y^2 with even x
var u = p
var s = sqrtmod(-1, u) || return NaN
var q = u
while (s*s > u) {
(s, q) = (q % s, s)
}
var (x, y) = (s, q % s)
assert_eq(x**2 + y**2, p)
return 2*(Gauss(x, y)**4 -> re)
#~ for x in (0 .. Inf `by` 2) {
#~ if (p - x*x -> is_square) {
#~ var y = isqrt(p - x*x)
#~ assert_eq(x**2 + y**2, p)
#~ return 2*(Gauss(x, y)**4 -> re)
#~ }
#~ }
}
func r10_c(f) is cached {
# a(2^e) = (-4)^e
# a(p^e) = p^(2*e) * (1 + (-1)^e)/2 for p == 3 (mod 4)
# a(p^e) = a(p) * a(p^(e-1)) - p^4 * a(p^(e-2)) for p == 1 (mod 4)
# where a(p) = 2 * Re( (x + i*y)^4 ) and p = x^2 + y^2 with even x
var n = f.prod_2d {|p,e| ipow(p, e) }
return 0 if n.is_congruent(3, 4)
return 1 if (n == 1)
return 0 if (n <= 0)
return r10_d(n) if n.is_prime
f.prod_2d {|p,e|
p.is_congruent(1,4) ? (r10_d(p) * __FUNC__([[p, e-1]]) - (p**4 * __FUNC__([[p, e-2]]))) : (p**(2*e) * (1 + (-1)**e) / 2)
}
}
func r12_a(n) {
(-1)**(n-1) * 8 * n.divisors.sum {|d| (-1)**(n + n/d) * d**5 }
}
func r12_b(f) {
# A000735(n) = b(2*n + 1) where b(n) is multiplicative with:
# b(2^e) = 0^e
# b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2))
var n = f.prod_2d {|p,e| ipow(p, e) }
return 0 if (n < 0)
return 1 if (n == 0)
# TODO: handle base case when n is prime.
return ... if n.is_prime
f.prod_2d {|p,e|
r12_b([[p, 1]]) * r12_b([[p, e-1]]) - (p**5 * r12_b([[p, e-2]]))
}
}
func r(n, k=2) is cached {
return 1 if (n == 0)
return 0 if (k <= 0)
return (n.is_square ? 2 : 0) if (k == 1)
var v = n.valuation(2)
var t = (n >> v)
if (k == 2) { # OEIS: A004018
t.is_congruent(3, 4) && return 0
return r2(t)
}
# r_3(4*n) = r_3(n)
if ((k == 3) && (n%4 == 0)) {
n >>= 2
}
if (k == 4) { # OEIS: A000118
# Let n = 2^k * m, with m odd, then r_4(n) = 8 * sigma(2^min(k, 1) * m)
return (sigma(v >= 1 ? (t<<1) : t) << 3)
}
if (k == 6) { # OEIS: A000141
# r_6(n) = 16*A050470(n) - 4*A002173(n)
var f = t.factor_exp
var a = r6_a(f)
var b = r6_b(f)
return ((b << (4 + 2*v)) - (a << 2))
}
if (k == 8) { # OEIS: A000143
# Let n = 2^k * m, with m odd, then r_8(n) = (-1)^n * 16 * (8^(k+1) - 15)/7 * sigma_3(m)
var u = (((1 << (3*(v+1))) - 15)/7 * sigma(t, 3))
return ((-1)**n * (u << 4))
}
if (k == 10) { # OEIS: A000144
# r_10(n) = 4/5 * (A050456(n) + 16*A050468(n) + 8*A030212(n))
var f = t.factor_exp
var a = r10_a(f)
var b = (r10_b(f) * 16**v)
var c = ((-4)**v * r10_c(f))
return (4/5 * (a + 16*b + 8*c))
}
if (k == 12) {
# r_12(n) = A029751(n) + 16*A000735(n)
# But, I don't know how to compute A000735 efficiently...
#~ var a = r12_a(n)
#~ var b = r12_b(2*n + 1 -> factor_exp)
#~ return (a + 16*b)
}
var count = 0
var upto = n.isqrt
var n_is_square = n.is_square
for a in (0 .. upto) {
if (k > 2) {
count += (a.is_zero ? 1 : 2)*__FUNC__(n - a*a, k-1)
}
elsif (n - a*a -> is_square) {
count += (a.is_zero ? 1 : 2)*((n_is_square && (a == upto)) ? 1 : 2)
}
}
return count
}
for k in (0..20) {
say ("k = #{'%2d' % k}: ", 15.of { r(_, k) })
assert_eq(
30.of { r(_, k) },
30.of { ::squares_r(_, k) },
)
with (irand(30, 100)) {|n|
assert_eq(r(n, k), ::squares_r(n, k))
}
}
__END__
k = 0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
k = 1: [1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0]
k = 2: [1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0]
k = 3: [1, 6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, 48]
k = 4: [1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144, 96, 96, 112, 192]
k = 5: [1, 10, 40, 80, 90, 112, 240, 320, 200, 250, 560, 560, 400, 560, 800]
k = 6: [1, 12, 60, 160, 252, 312, 544, 960, 1020, 876, 1560, 2400, 2080, 2040, 3264]
k = 7: [1, 14, 84, 280, 574, 840, 1288, 2368, 3444, 3542, 4424, 7560, 9240, 8456, 11088]
k = 8: [1, 16, 112, 448, 1136, 2016, 3136, 5504, 9328, 12112, 14112, 21312, 31808, 35168, 38528]
k = 9: [1, 18, 144, 672, 2034, 4320, 7392, 12672, 22608, 34802, 44640, 60768, 93984, 125280, 141120]
k = 10: [1, 20, 180, 960, 3380, 8424, 16320, 28800, 52020, 88660, 129064, 175680, 262080, 386920, 489600]
k = 11: [1, 22, 220, 1320, 5302, 15224, 33528, 63360, 116380, 209550, 339064, 491768, 719400, 1095160, 1538416]
k = 12: [1, 24, 264, 1760, 7944, 25872, 64416, 133056, 253704, 472760, 825264, 1297056, 1938336, 2963664, 4437312]
k = 13: [1, 26, 312, 2288, 11466, 41808, 116688, 265408, 535704, 1031914, 1899664, 3214224, 5043376, 7801744, 12066912]
k = 14: [1, 28, 364, 2912, 16044, 64792, 200928, 503360, 1089452, 2186940, 4196920, 7544992, 12547808, 19975256, 31553344]
k = 15: [1, 30, 420, 3640, 21870, 96936, 331240, 911040, 2128260, 4495430, 8972712, 16946280, 29822520, 49476840, 80027280]
k = 16: [1, 32, 480, 4480, 29152, 140736, 525952, 1580800, 3994080, 8945824, 18626112, 36714624, 67978880, 118156480, 197120256]
k = 17: [1, 34, 544, 5440, 38114, 199104, 808384, 2641664, 7213984, 17215458, 37569728, 77129408, 149405248, 272064192, 470966912]
k = 18: [1, 36, 612, 6528, 48996, 275400, 1207680, 4269312, 12573540, 32041636, 73617480, 157553280, 318102912, 605381832, 1090632960]
k = 19: [1, 38, 684, 7752, 62054, 373464, 1759704, 6697728, 21210156, 57739518, 140116184, 313328088, 658369608, 1305768920, 2449182384]
k = 20: [1, 40, 760, 9120, 77560, 497648, 2508000, 10232640, 34729720, 100906760, 259114704, 606957280, 1327461600, 2738111280, 5341699520]