-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsum_of_two_squares_solutions_tonelli-shanks.sf
224 lines (165 loc) · 5.87 KB
/
sum_of_two_squares_solutions_tonelli-shanks.sf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/ruby
# Daniel "Trizen" Șuteu
# Date: 26 October 2017
# https://github.com/trizen
# A recursive algorithm for finding all the non-negative integer solutions to the equation:
# a^2 + b^2 = n
# for any given positive integer `n` for which such a solution exists.
# Example:
# 99025 = 41^2 + 312^2 = 48^2 + 311^2 = 95^2 + 300^2 = 104^2 + 297^2 = 183^2 + 256^2 = 220^2 + 225^2
# Blog post:
# https://trizenx.blogspot.com/2017/10/representing-integers-as-sum-of-two.html
# This algorithm is efficient when the factorization of `n` can be computed.
# See also:
# https://oeis.org/A001481
func tonelli(n, p) {
var q = p-1
var s = valuation(q, 2)
s == 1 && return powmod(n, (p + 1) >> 2, p)
q >>= s
var c = powmod(2 ..^ p -> first {|z| legendre(z, p) == -1 }, q, p)
var r = powmod(n, (q + 1) >> 1, p)
var t = powmod(n, q, p)
while (!p.divides(t - 1)) {
var b = 1
var t2 = (t*t % p)
for i in (1 ..^ s) {
if (p.divides(t2 - 1)) {
b = powmod(c, 1 << (s - i - 1), p)
s = i
break
}
t2 = (t2*t2 % p)
}
r = (r*b % p)
c = (b*b % p)
t = (t*c % p)
}
return r
}
func sqrt_mod_n(a, n) is cached {
a = (a % n)
kronecker(a, n) == 1 || return []
if ((n & (n - 1)) == 0) { # n is a power of 2
if (a % 8 == 1) {
var k = n.valuation(2)
k == 1 && return [1]
k == 2 && return [1, 3]
k == 3 && return [1, 3, 5, 7]
if (a == 1) {
return [1, (n>>1) - 1, (n>>1) + 1, n - 1]
}
return gather {
for s in (sqrt_mod_n(a, n >> 1)) {
var i = (((s*s - a) >> (k - 1)) % 2)
var r = (s + (i << (k - 2)))
take(r, n - r)
}
}.uniq
}
return []
}
if (n.is_prime) { # n is a prime
return gather {
var r = tonelli(a, n)
take(r, n - r)
}
}
var pe = n.factor_exp # factorize `n` into prime powers
if (pe.len == 1) { # `n` is an odd prime power
var p = pe[0][0]
var k = pe[0][1]
kronecker(a, p) == 1 || return []
var (r1, r2) = with( tonelli(a, p) ) { |r|
(r, n - r)
}
var pk = p
var pi = p*p
(k-1).times {
var x = r1
var y = (invmod(2, pk) * invmod(x, pk))
r1 = ((pi + x - y*(x*x - a + pi)) % pi)
r2 = (pi - r1)
pk *= p
pi *= p
}
return [r1, r2]
}
var solutions = []
for p,e in (pe) {
var m = p**e
var r = sqrt_mod_n(a, m)
solutions << r.map {|r0| [r0, m] }
}
gather {
solutions.cartesian {|*a|
take(Math.chinese(a...))
}
}.uniq
}
func sum_of_two_squares_solutions(n) is cached {
n < 0 && return []
n == 0 && return [[0, 0]]
var prod1 = 1
var prod2 = 1
var prime_powers = []
for p,e in (n.factor_exp) {
if (p % 4 == 3) { # p = 3 (mod 4)
e.is_even || return [] # power must be even
prod2 *= p**(e >> 1)
}
elsif (p == 2) { # p = 2
if (e.is_even) { # power is even
prod2 *= p**(e >> 1)
}
else { # power is odd
prod1 *= p
prod2 *= p**((e - 1) >> 1)
prime_powers << [p, 1]
}
}
else { # p = 1 (mod 4)
prod1 *= p**e
prime_powers << [p, e]
}
}
prod1 == 1 && return [[prod2, 0]]
prod1 == 2 && return [[prod2, prod2]]
var solutions = []
for r in (sqrt_mod_n(-1, prod1)) {
var s = r
var q = prod1
while (s*s > prod1) {
(s, q) = (q % s, s)
}
solutions << [prod2 * s, prod2 * (q % s)]
}
for p,e in (prime_powers) {
for (var i = e%2; i < e; i += 2) {
var sq = p**((e - i) >> 1)
var pp = p**(e - i)
solutions += __FUNC__(prod1 / pp).map { |pair|
pair.map {|r| sq * prod2 * r }
}
}
}
solutions.map {|pair| pair.sort } \
.uniq_by {|pair| pair[0] } \
.sort_by {|pair| pair[0] }
}
50.times {
var n = 1e10.irand
var solutions = sum_of_two_squares_solutions(n) || next
say %Q(#{n} = #{solutions.map {|a| "#{a[0]}^2 + #{a[1]}^2" }.join(' = ') })
}
assert_eq(sum_of_two_squares_solutions(2025), [[0, 45], [27, 36]])
assert_eq(sum_of_two_squares_solutions(164025), [[0, 405], [243, 324]])
assert_eq(sum_of_two_squares_solutions(99025), [[41, 312], [48, 311], [95, 300], [104, 297], [183, 256], [220, 225]])
assert_eq(
-10 .. 160 -> grep { sum_of_two_squares_solutions(_).len > 0 },
%n[0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160]
)
assert_eq(
sum_of_two_squares_solutions(11392163240756069707031250),
[[39309472125, 3374998963875], [216763660575, 3368260197225], [477329304375, 3341305130625], [729359177085, 3295481517405], [735019741071, 3294223614297], [907262616645, 3251005657515], [982736803125, 3228992353125], [1151205969375, 3172835964375], [1224793301193, 3145162095999], [1393801568775, 3074000720175], [1622919634875, 2959441687125], [1847545189875, 2824666354125], [1993551800625, 2723584854375], [2056446956025, 2676413487825], [2194367046795, 2564549961435], [2198769707673, 2560776252111], [2386646521875, 2386646521875]]
)