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Background: Problem to solve

• Rapid advances in integrated circuit technology have led to a 
dramatic increase in the complexity of VLSI circuits.


• We need a good block placement solution to not only minimize 
chip area, but also minimize interconnect cost while satisfying all 
placement constraint.


• Although Block placement is a classical problem with many 
state-of-art solutions, it remains to be a hard problem.



Motivation: Why Should We Care

• Existing solutions are not fast enough:

• Murata et al introduced sequence pair to represent block 

placement elegantly which constructs a pair of horizontal and 
vertical constraint graphs and computing longest paths in 
both graphs with  time.


• Tang et al proposed an  algorithm based on 
evaluation of sequential pair with computing longest common 
subsequence.


• New representations such as O-tree and B*-tree produce 
better results than sequence-pair based algorithms due to 
sequence pair’s inherently larger solution space.

𝒪(n2)
𝒪(n log n)



Contributions

• This paper presents FAST-SP: a fast block placement algorithm 
based on the sequence-pair representation. Two main 
contributions are discussed:


• Fast evaluation of sequence pair: Since all sequence-pair 
based algorithms are based on simulated annealing, a large 
number of sequence pairs are needed to be generated and 
evaluated. FAST-SP can reach  runtime and 
examine more sequence pairs.


• Handle placement constraints: No previous sequence-pair 
based algorithm can handle placement constraint such as pre-
placed constraint, range constraint, and boundary constraint.

𝒪(n log log n)



Recap: Block Placement by Sequence Pair

• Sequence pair  gives the relative positions of the 
blocks. A horizontal or vertical constraint graph  or 

 can be constructed as follows: (take horizontal as 
example)


• 


• 


• Vertex weight = width of block  for vertex , 0 for 

• Longest path algorithm can be applied to determine  the 

coordinates of each block. As for runtime, construction of  
constraint graphs takes  time and longest path 
computation takes  time overall time is then .

(X, Y )
Gh(V, E)

Gv(V, E)

V = {sh} ∪ {th} ∪ {vi | i = 1,...,n}
E = {(sh, vi) | i = 1,...n} ∪ {(vi, th) | i = 1,...n}

∪ {(vi, vj) |block i is to the left of block j}

i vi sh and th

Θ(n2)
𝒪(n + m) Θ(n2)



Technical Approaches

• FAST-SP is based on the evaluation of Longest Common 
Subsequence (LCS) for Weighted Sequence Pair.


• Weighted sequence is a sequence with every element  has a 
weight .


• A common subsequence  of weighted sequences  and  is a 
subsequence of both  and , the length of  is .


• is the common subsequence of 

si
w(si) ≥ 0

Z X Y
X Y Z

n

∑
i=1

w(zi)

< 1 2 > < 1 5 2 >  and < 4 1 2 5 >



Technical Approaches (cont’d) 

• For given sequence pair , a path from  in horizontal 
constraint graph  corresponds to a common subsequence of 

. For vertical graph, a path from  corresponds to 
.


• E.g. 

(X, Y ) sh
Gh

(X, Y ) sv
(XR, Y )

(X, Y ) = ( < 4 3 1 6 2 5 > , < 6 3 5 4 1 2 > ) (XR, Y ) = ( < 5 2 6 1 3 4 > , < 6 3 5 4 1 2 > )



Technical Approaches (cont’d) 
• Prove the equivalence of sequence pair evaluation and longest common 

subsequence computation:

• Suppose a block  in the sequence pair . Let 

, 


• For horizontal Constraint graph, a path from  to  corresponds to a 
common subsequence of ; Vertically, a path from  to  
corresponds to .


• If ,  is the x-coordinate of block . Then 
 is the width of the block placement.


• If ,  is the y-coordinate of block . 
Then  is the height of the block placement.

b (X, Y )
(X, Y ) = (X1bX2, Y1bY2) (XR, Y ) = (XR

2 bXR
1 , Y1bY2)
sh b

(X1, Y1) sv b
(XR

2 , Y1)
w(i) = width of block i lcs(X1, Y1) b

lcs(X, Y )
w(i) = height of block i lcs(XR

2 , Y1) b
lcs(XR, Y )



Technical Approaches (cont’d) 
• FAST-SP uses Priority Queue and Bucket List Data 

structure to store and sort LCS. Priority Queue can be 
represented by a complete binary tree . The lowest 
leaf nodes correspond to the index of bucket node.


•  is represented as  where  is the size of 
index domain and  is the height of the 
tree. A bucket on the bucket list corresponds to the 
path  of the related leaf .


• Let  become the length of the smallest interval 
between the indices in the bucket list covering the 
index newly inserted or deleted. It has been proved 
that runtime of insertion or deletion on Priority Queue 
is .


H

H {1,...,2h + n} n
h = ⌈log(n + 1)⌉

(1 → f ) f
D

𝒪(log log D)



Technical Approaches (cont’d) 

•  gives the index of block 
 in the Sequence, e.g. 

if  


•  records the  or  
coordinate of .


•  records the length 
of candidates of the longest common 
subsequence.


•  reports 
 in  time 

with  space requirement.

MATCH(b)
b
MATCH(b) . x = i and MATCH(b) . y = j

b = X[i] = Y[ j]
POS(b) x y

b
BUCKL[index]

BUCKL[indexmax]
lcs(X, Y ) 𝒪(n log log n)

𝒪(n)



Technical Approaches (cont’d) 

• We know location of 
if we 

assume  is the last element of the above 
, then 

then 


•  will be 

• Line 10 is used to delete the element in 

the bucket list with higher index but less 
value to LCS computation to make sure 
the algorithm return 

b = lcs(X[1,...,i − 1], Y[1,...,j − 1])
b′￼

LCS
MATCH[b′￼] . x ≤ i − 1 and MATCH[b′￼] . y ≤ j − 1

lcs(X[1,...,i − 1], Y[1,...,j − 1])
= lcs(X[1,...,MATCH[b′￼] . x − 1],

Y[1,...,MATCH[b′￼] . y − 1) + w(b′￼)
predecessor(p) MATCH[b′￼] . y

lcs(X, Y )



Technical Approaches (cont’d) 

• For the space requirement, since 
 and 

, we have 
 hence the .


• For the runtime, 


• Initialization would take  time

• Line 7 and 10 would take 

 as discussed before.

• At most n node discarded so that we 

confirm the runtime of 
.

H = {1,...,2h + n}
h = ⌈log(n + 1)⌉
2n + 1 ≤ H < 3n + 2 𝒪(n)

𝒪(n)

𝒪(log log D)

𝒪(n log log n)



Technical Approaches (cont’d) 

• Pre-place constraint: for a block  and a point 
, block  must be placed with its lower-left 

corner at the point.

• Range constraint: block  must be placed at the 

range  (Pre-place is 
a special case)


• Boundary constraint: block  must be placed at 
the side of the final packing.


• Dummy blocks are introduced.

b
(x1, y1) b

b
{x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}

b

Range

Boundary



Technical Approaches (cont’d) 

• Dummy blocks would not show in sequence pair 
but add additional edges to meet the constraints.


• However, when adding such constraints, there 
may not exist packing for some sequence pair 
which makes it infeasible pair.


• More specifically, A sequence pair  is 
feasible if and only if the length of the longest path 
from  to  in  is no more than  and the 
length of the longest path from  to  in  is no 
more than .


(X, Y )

sh th Gh W
sv tv Gv

H



Technical Approaches (cont’d) 

• Modified algorithm without 
runtime penalty.


• A “sink” variable  is 
introduced to record the 
intermediate  imposed by 
dummy blocks in placement 
constraints.

t

lcs



Technical Approaches (cont’d) 

• A unified cost function is introduced:

• From the return value (set as )from the modified 

algorithm, we can get the area for the given sequence pair.

• 

• The unified cost function will be .

• With balance factor  and interconnect cost .

lcs′￼(X, Y )

A = lcs′￼(X, Y ) ⋅ lcs′￼(XR, Y )
C = αA + βW

α and β W



Experimental Results

• O-tree and B*-tree have reported the best results for these 
benchmarks.


• FAST-SP outperforms the other two methods.



Experimental Results

• FAST-SP can handle problems with placement constraints.

The result packing of ami49.



Pros and Cons of the Work

• Pros:

• FAST-SP improves the runtime of evaluating a sequence pair 

significantly to .

• It can also handle placement constraints without increasing 

runtime.

• Cons: 


• The proposed method uses LCS method which might have 
some limitations, e.g., to handle rectilinear shape constraint.


• The solution may be sub-optimal for other constraints, such as 
minimizing wire length, routing congestion and buffer allocation.

𝒪(n log log n)



Summary

• A fast block placement algorithm based on sequence pair — 
FAST-SP is presented. 


• FAST-SP can reach a significant lower runtime  
and can also handle some placement constraints such as pre-
placed constraint, range constraint and boundary constraint 
without runtime penalty.


• A unified cost function was derived for the evaluation.

• Experimental results proved the significant improved 

performance of FAST-SP.

𝒪(n log log n)


