
FAST-SP: A Fast Algorithm for Block
Placement based on Sequence pair 

Xiaoping Tang and D.F. Wong

UT Austin

Mingju Liu

Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT

Background: Problem to solve

• Rapid advances in integrated circuit technology have led to a
dramatic increase in the complexity of VLSI circuits.

• We need a good block placement solution to not only minimize
chip area, but also minimize interconnect cost while satisfying all
placement constraint.

• Although Block placement is a classical problem with many
state-of-art solutions, it remains to be a hard problem.

Motivation: Why Should We Care

• Existing solutions are not fast enough:

• Murata et al introduced sequence pair to represent block

placement elegantly which constructs a pair of horizontal and
vertical constraint graphs and computing longest paths in
both graphs with time.

• Tang et al proposed an algorithm based on
evaluation of sequential pair with computing longest common
subsequence.

• New representations such as O-tree and B*-tree produce
better results than sequence-pair based algorithms due to
sequence pair’s inherently larger solution space.

𝒪(n2)
𝒪(n log n)

Contributions

• This paper presents FAST-SP: a fast block placement algorithm
based on the sequence-pair representation. Two main
contributions are discussed:

• Fast evaluation of sequence pair: Since all sequence-pair
based algorithms are based on simulated annealing, a large
number of sequence pairs are needed to be generated and
evaluated. FAST-SP can reach runtime and
examine more sequence pairs.

• Handle placement constraints: No previous sequence-pair
based algorithm can handle placement constraint such as pre-
placed constraint, range constraint, and boundary constraint.

𝒪(n log log n)

Recap: Block Placement by Sequence Pair

• Sequence pair gives the relative positions of the
blocks. A horizontal or vertical constraint graph or

 can be constructed as follows: (take horizontal as
example)

•

•

• Vertex weight = width of block for vertex , 0 for

• Longest path algorithm can be applied to determine the

coordinates of each block. As for runtime, construction of
constraint graphs takes time and longest path
computation takes time overall time is then .

(X, Y)
Gh(V, E)

Gv(V, E)

V = {sh} ∪ {th} ∪ {vi | i = 1,...,n}
E = {(sh, vi) | i = 1,...n} ∪ {(vi, th) | i = 1,...n}

∪ {(vi, vj) |block i is to the left of block j}

i vi sh and th

Θ(n2)
𝒪(n + m) Θ(n2)

Technical Approaches

• FAST-SP is based on the evaluation of Longest Common
Subsequence (LCS) for Weighted Sequence Pair.

• Weighted sequence is a sequence with every element has a
weight .

• A common subsequence of weighted sequences and is a
subsequence of both and , the length of is .

• is the common subsequence of

si
w(si) ≥ 0

Z X Y
X Y Z

n

∑
i=1

w(zi)

< 1 2 > < 1 5 2 > and < 4 1 2 5 >

Technical Approaches (cont’d)

• For given sequence pair , a path from in horizontal
constraint graph corresponds to a common subsequence of

. For vertical graph, a path from corresponds to
.

• E.g.

(X, Y) sh
Gh

(X, Y) sv
(XR, Y)

(X, Y) = (< 4 3 1 6 2 5 > , < 6 3 5 4 1 2 >) (XR, Y) = (< 5 2 6 1 3 4 > , < 6 3 5 4 1 2 >)

Technical Approaches (cont’d)
• Prove the equivalence of sequence pair evaluation and longest common

subsequence computation:

• Suppose a block in the sequence pair . Let

,

• For horizontal Constraint graph, a path from to corresponds to a
common subsequence of ; Vertically, a path from to
corresponds to .

• If , is the x-coordinate of block . Then
 is the width of the block placement.

• If , is the y-coordinate of block .
Then is the height of the block placement.

b (X, Y)
(X, Y) = (X1bX2, Y1bY2) (XR, Y) = (XR

2 bXR
1 , Y1bY2)
sh b

(X1, Y1) sv b
(XR

2 , Y1)
w(i) = width of block i lcs(X1, Y1) b

lcs(X, Y)
w(i) = height of block i lcs(XR

2 , Y1) b
lcs(XR, Y)

Technical Approaches (cont’d)
• FAST-SP uses Priority Queue and Bucket List Data

structure to store and sort LCS. Priority Queue can be
represented by a complete binary tree . The lowest
leaf nodes correspond to the index of bucket node.

• is represented as where is the size of
index domain and is the height of the
tree. A bucket on the bucket list corresponds to the
path of the related leaf .

• Let become the length of the smallest interval
between the indices in the bucket list covering the
index newly inserted or deleted. It has been proved
that runtime of insertion or deletion on Priority Queue
is .

H

H {1,...,2h + n} n
h = ⌈log(n + 1)⌉

(1 → f) f
D

𝒪(log log D)

Technical Approaches (cont’d)

• gives the index of block
 in the Sequence, e.g.

if

• records the or
coordinate of .

• records the length
of candidates of the longest common
subsequence.

• reports
 in time

with space requirement.

MATCH(b)
b
MATCH(b) . x = i and MATCH(b) . y = j

b = X[i] = Y[j]
POS(b) x y

b
BUCKL[index]

BUCKL[indexmax]
lcs(X, Y) 𝒪(n log log n)

𝒪(n)

Technical Approaches (cont’d)

• We know location of
if we

assume is the last element of the above
, then

then

• will be

• Line 10 is used to delete the element in

the bucket list with higher index but less
value to LCS computation to make sure
the algorithm return

b = lcs(X[1,...,i − 1], Y[1,...,j − 1])
b′￼

LCS
MATCH[b′￼] . x ≤ i − 1 and MATCH[b′￼] . y ≤ j − 1

lcs(X[1,...,i − 1], Y[1,...,j − 1])
= lcs(X[1,...,MATCH[b′￼] . x − 1],

Y[1,...,MATCH[b′￼] . y − 1) + w(b′￼)
predecessor(p) MATCH[b′￼] . y

lcs(X, Y)

Technical Approaches (cont’d)

• For the space requirement, since
 and

, we have
 hence the .

• For the runtime,

• Initialization would take time

• Line 7 and 10 would take

 as discussed before.

• At most n node discarded so that we

confirm the runtime of
.

H = {1,...,2h + n}
h = ⌈log(n + 1)⌉
2n + 1 ≤ H < 3n + 2 𝒪(n)

𝒪(n)

𝒪(log log D)

𝒪(n log log n)

Technical Approaches (cont’d)

• Pre-place constraint: for a block and a point
, block must be placed with its lower-left

corner at the point.

• Range constraint: block must be placed at the

range (Pre-place is
a special case)

• Boundary constraint: block must be placed at
the side of the final packing.

• Dummy blocks are introduced.

b
(x1, y1) b

b
{x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}

b

Range

Boundary

Technical Approaches (cont’d)

• Dummy blocks would not show in sequence pair
but add additional edges to meet the constraints.

• However, when adding such constraints, there
may not exist packing for some sequence pair
which makes it infeasible pair.

• More specifically, A sequence pair is
feasible if and only if the length of the longest path
from to in is no more than and the
length of the longest path from to in is no
more than .

(X, Y)

sh th Gh W
sv tv Gv

H

Technical Approaches (cont’d)

• Modified algorithm without
runtime penalty.

• A “sink” variable is
introduced to record the
intermediate imposed by
dummy blocks in placement
constraints.

t

lcs

Technical Approaches (cont’d)

• A unified cost function is introduced:

• From the return value (set as)from the modified

algorithm, we can get the area for the given sequence pair.

•

• The unified cost function will be .

• With balance factor and interconnect cost .

lcs′￼(X, Y)

A = lcs′￼(X, Y) ⋅ lcs′￼(XR, Y)
C = αA + βW

α and β W

Experimental Results

• O-tree and B*-tree have reported the best results for these
benchmarks.

• FAST-SP outperforms the other two methods.

Experimental Results

• FAST-SP can handle problems with placement constraints.

The result packing of ami49.

Pros and Cons of the Work

• Pros:

• FAST-SP improves the runtime of evaluating a sequence pair

significantly to .

• It can also handle placement constraints without increasing

runtime.

• Cons:

• The proposed method uses LCS method which might have
some limitations, e.g., to handle rectilinear shape constraint.

• The solution may be sub-optimal for other constraints, such as
minimizing wire length, routing congestion and buffer allocation.

𝒪(n log log n)

Summary

• A fast block placement algorithm based on sequence pair —
FAST-SP is presented.

• FAST-SP can reach a significant lower runtime
and can also handle some placement constraints such as pre-
placed constraint, range constraint and boundary constraint
without runtime penalty.

• A unified cost function was derived for the evaluation.

• Experimental results proved the significant improved

performance of FAST-SP.

𝒪(n log log n)

