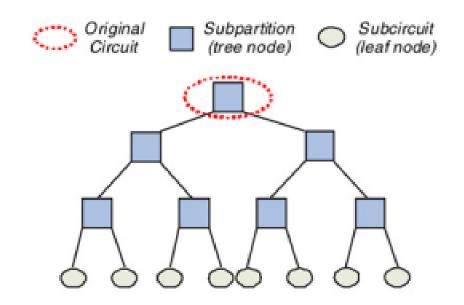
DeFer: Deferred Decision Making Enabled Fixed-Outline Floorplanning Algorithm

Elmir Dzaka


Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT

Background – Deferred Decision Making (DDM)

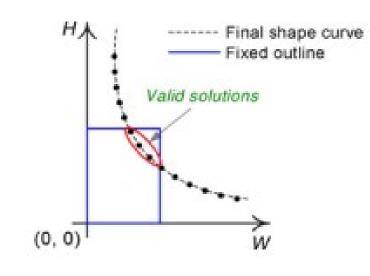
- Refers to collecting evidence about two or more alternatives
- Decide when to stop and make a final choice
- Compacts a slicing floorplan when applied to a floor-planning algorithm

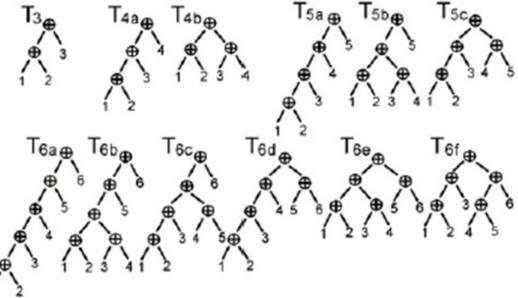
Why Should We Care?

- A single slicing tree can be used as opposed to the simulated annealing method
 - Drastically increases performance
 - Used to generate a final non-slicing floorplan
- How can we develop an algorithm that can generate a final nonslicing floorplan?

Formal Problem Formulation

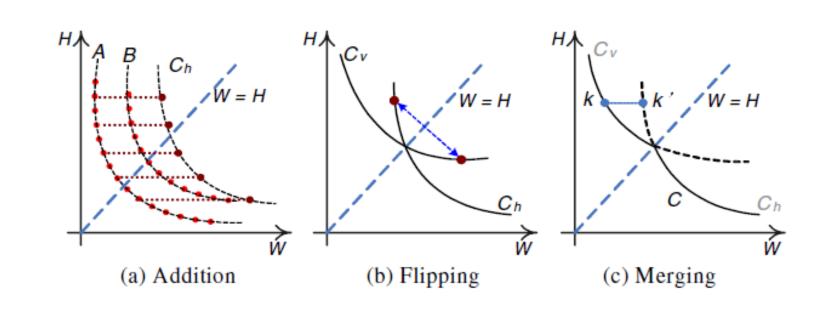
- Input: *n* hard/soft module blocks with areas A₁,...,A_n
- Constraints: a fixed-outline floorplan with area A
- Output: An optimized non-slicing floorplan with coordinates (x_i , y_i), width w_i and height h_i for each block such that $h_i w_i = A_i$ and $r_i \le h_i/w_i \le s_i$

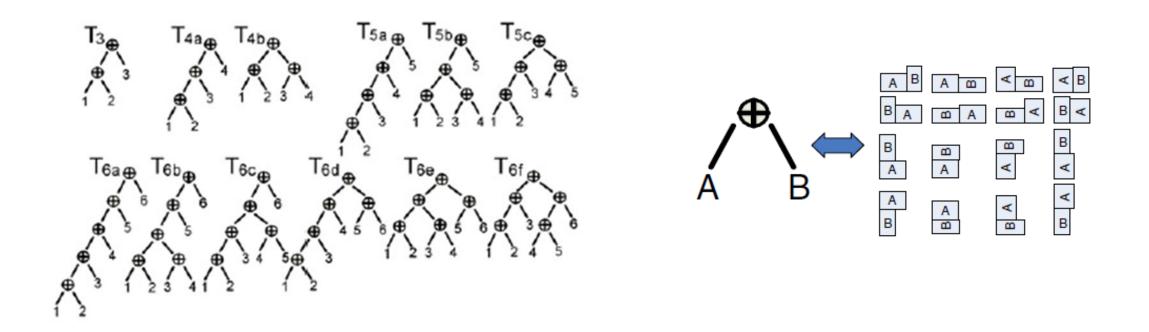

DeFer


- Algorithm that chooses the final non-slicing floorplan from a single slicing tree
- Fast, scalable, and can handle both hard and soft modules
- Uses a Generalized Slicing Tree along with Enumerative Packing and block swapping/mirroring to make a decision

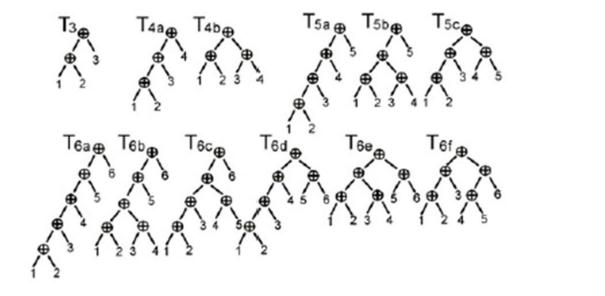
Begin		
Step	1):	Top-down recursive min-cut bisectioning
Step	2):	Bottom-up recursive shape curve combination
Step	3):	Top-down tracing selected points
		Top-down wirelength refinement by swapping
		Slicing floorplan compaction
		Greedy wirelength-driven shifting
Step End	6):	Greedy wirelength-driven shifting

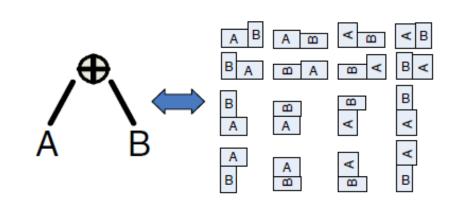
Purpose of a Generalized Slicing Tree


- A Generalized Slicing Tree can be enumerated to reach all slicing layouts
 - Using the enumerative packing (EP) technique while enumerating builds up one shape curve
 - A shape curve captures all slicing layouts among the modules of a sub floorplan

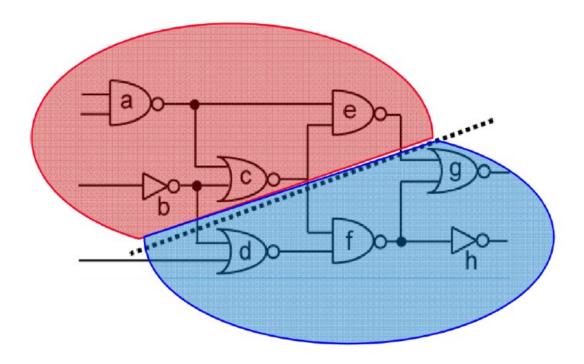

Shape Curve

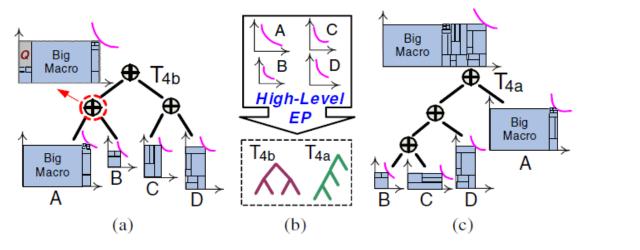
- Generate a parent curve C by finding child curves A and B
- Three steps:
 - Addition
 - Flipping
 - Merging

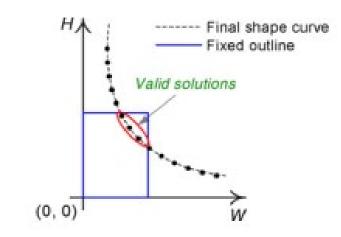

Enumerative Packing (Greedy)


- Map each subcircuit to a leaf node
- Prune redundant orders to find non-redundant permutations
 N!/2

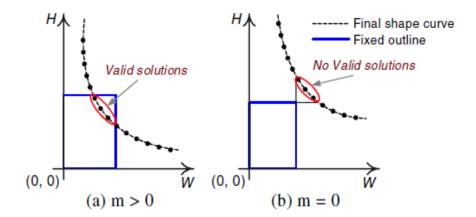
Enumerative Packing (Dynamic Programming)

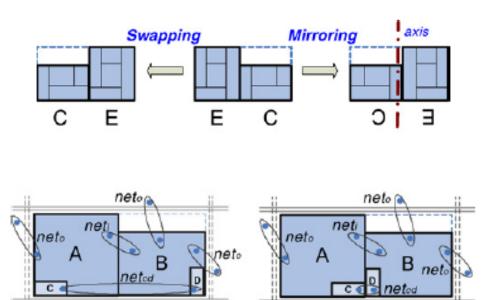

- $S(M) = MERGE_{(A \subset B, B = M A)}(S(A) \oplus S(B)).$
 - S(M) = Shape Curve
 - MERGE = Merge operation
 - $(S(A) \oplus S(B))$ = shape curve formula


Step One: Partitioning


- Divide the original circuit into multiple sub-circuits
 - Minimize interconnections among them
 - Done using hMetris
- Build a high-level slicing tree with each sub-circuit being a leaf node

Step Two: Combining

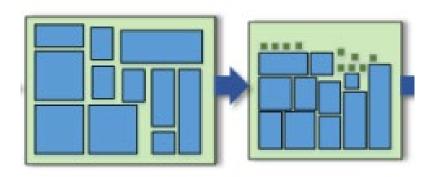

- Defer the decision of each subcircuit by applying the EP technique
 - Explores all slicing packing layouts within the subcircuit
 - The final shape curve at the root maintains all explored slicing floorplan layouts
 - WAP (Whitespace-Aware Pruning) prunes redundant points


Step Three: Back-Tracing

- Final shape curve is generated from candidate points of subcircuits
 - Backtrace from top-down to generate candidate points
 - Every point is generated by adding two points from two child curves

Step Four: Swapping

- Make decisions on the subfloorplan order
 - Dimensions stay the same, but wire interconnections are optimized
- Greedily swap every two child subfloorplans
 - Rough Swapping
 - Detailed Swapping
 - Mirroring



(b)

(a)

Step Five: Compacting and Shifting

- Compact all modules to the center of the fixed outline
 - Puts modules nearer to each other such that the wirelength is further reduced
- Candidate floorplan with the best wirelength is the final output solution
- Greedily shift modules if modules are over-compacted

2. Initial floorplan 3. Compact floorplan

Contributions

- A fast and scalable fixed-outline floorplanner
 - Done by using a Generalized Slicing Tree
- Enumerative Packing (EP)
 - Defer decisions on all sub-circuits to get a final shape curve
- Rough Swapping and Mirroring

Experimental Results

- Results performed on a Linux machine with Intel Duo⁹ 1.86 GHz CPU and 2GB memory
- Wirelength measured by HPWL
- DeFer compared with best publicly-available floor-planners

Experimental Results: Hard-Block Benchmarks

Circuit			n100			n200			n300		Normallized
Asp	Aspect Ratio		2	3	1	2	3	1	2	3	1
Suc%	Parquet 4.5	42%	43%	33%	26%	19%	17%	16%	16%	14%	0.25
	FSA	100%	0%	0%	100%	0%	0%	0%	0%	0%	0.22
	IMF	100%	100%	100%	100%	100%	100%	100%	100%	100%	1.00
	IARFP	99%	100%	99%	100%	99%	63%	100%	100%	46%	0.90
	PATOMA	0%	0%	0%	0%	100%	0%	100%	100%	100%	0.44
	Capo 10.5	17%	17%	15%	0%	0%	2%	0%	1%	0%	0.06
	DeFer	100%	100%	100%	100%	100%	100%	100%	100%	100%	1
HPWL	Parquet 4.5	248 652	269 191	289 963	467 627	506 946	544 621	686 588	725 833	781 556	1.27
	FSA	243 823	_	-	414777	_	_	-	_	_	1.14
	IMF	250680	251418	257 935	438 467	454 231	482 651	584 578	617 510	666 245	1.14
	IARFP	220 269	230 553	247 283	386 537	409 208	433 631	535 850	567 496	600 438	1.03
	PATOMA	-	_	-	-	483 110	_	653711	697 740	680 671	1.25
	Capo 10.5	227 046	241789	261 334	-	-	444 079	-	566 998	_	1.05
	DeFer	208 650	229 603	248 567	372 546	402 155	431 552	498 909	538 515	577 209	1
Time (s)	Parquet 4.5	10.85	10.58	10.27	44.43	44.47	41.96	95.02	87.03	86.31	181.49
	FSA	39.78	_	-	202.13	_	_	-	-	-	557.74
	IMF	7.65	10.82	9.29	41.21	43.59	38.71	74.74	71.48	71.72	157.91
	IARFP	4.44	4.50	4.52	16.51	15.48	14.22	29.30	29.48	30.03	64.33
	PATOMA	-	-	-	-	0.25	-	0.36	0.34	0.48	1.15
	Capo 10.5	122.64	125.18	160.07	-	-	3054	-	8661	-	222.39
	DeFer	0.13	0.11	0.11	0.25	0.23	0.22	0.35	0.33	0.33	1
#Valid Poi	nt/#Total Point	3/617	4/621	3/621	3/670	2/672	2/672	6/869	5/869	4/869	

TABLE II COMPARISON ON GSRC HARD-BLOCK BENCHMARKS [22] (y = 10%)

Experimental Results: Soft-Block Benchmarks

TABLE III											
COMPARISON ON GSRC SOFT-BLOCK BENCHMARKS [22] ($\gamma = 1\%$)											

Circuit		n100				n200			Normallized		
Aspect Ratio		1	2	3	1	2	3	1	2	3	
	Parquet 4.5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0
Suc%	Capo 10.5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0
	PATOMA	100%	100%	100%	100%	100%	100%	100%	100%	100%	1.00
	DeFer	100%	100%	100%	100%	100%	100%	100%	100%	100%	1
	Parquet 4.5	-		-	_	_	_	-	_	_	_
HPWL	Capo 10.5	_		-	_		—	-	_	_	
	PATOMA	215 455	213 561	230759	383 330	367 565	404 574	524 774	486 351	518 204	1.01
	DeFer	196457	217 686	235 702	354 885	380470	410 464	476 508	514764	551 610	1
	Parquet 4.5	—	_	-	_	_	-	-	_	_	_
Time (s)	Capo 10.5	—		-	_	-	_	_	_	_	— I
	PATOMA	0.39	0.40	0.38	0.92	0.93	0.83	1.28	1.28	1.37	3.50
	DeFer	0.09	0.09	0.09	0.18	0.19	0.19	0.78	0.96	0.97	1
#Valid Point/#Total Point		28/20 392	30/20469	30/20469	16/25 513	18/25 493	17/25 493	9/30613	10/30 598	10/30 603	

Experimental Results: Macro Analysis

TABLE IV

Comparison on HB Benchmarks [24] ($\gamma = 10\%$)

Circuit	#Soft./#Hard.	Aspect	PATOMA [14]			Capo 10.5 [5]			DeFer			#Valid Point
	/#Net.	Ratio	Suc%	WL (e+06) Time (s)	Suc%	WL (e+06)		Suc%	WL (e+06)	Time (s)	/#Total Point
	665	1	100%	2.84	7.04	0%	_	183	100%	2.66	1.44	16/1571
ibm01	/246	2	0%	_	_	0%	_	977	100%	2.70	1.28	11/1482
	/4236	3	100%	5.60	1.66	0%	-	696	100%	2.82	1.30	12/1490
	1200	1	0%	-	-	0%	-	456	85%	6.55	14.48	6/2348
ibm02	/271	2	0%	-	-	-	-	> 2 days	100%	6.21	3.33	7/1161
	/7652	3	0%	-	_	0%	-	3726	100%	6.29	3.52	10/1144
ibm03	999	1	100%	12.59	5.42	100%	10.70	566	100%	8.77	3.60	59/2684
	/290	2	100%	12.94	5.58	100%	12.01	1874	100%	8.89	3.49	40/2503
	/7956	3	0%	-	-	0%	-	2028	100%	8.99	3.59	44/2630
	1289	1 2	0%	_	_	0%	17.77	2752	100%	8.94	3.04	4/1492
ibm04	/295 /10055	3	0%	_	_	100% 100%	17.77 16.32	5253 2262	100% 100%	8.96 9.64	3.12 6.31	9/1514 12/2685
		-										
ibm05	564 /0	1 2	100% 100%	12.27 12.60	14.21 13.68	0%	-	458 358	100% 100%	12.61 12.73	3.55 3.52	46/3369 46/3371
10m05	/7887	3	100%	13.19	13.85	0%	_	411	100%	13.45	3.52	46/3371
	571	1	0%	-		0%		235	100%	7.87	3.66	53/2187
ibm06	/178	2	0%	_	_	0%	_	592	100%	7.76	3.66	41/2235
101100	/7211	3	0%	_	_	0%	_	2831	100%	8.91	3.60	36/2196
	829	1	0%			0%	_	1094	100%	13.81	3.87	12/1527
ibm07	/291	2	100%	24.64	7.85	0%	_	1270	100%	13.91	4.48	22/1625
1011107	/11 109	3	100%	24.34	8.68	0%	_	2274	100%	14.32	4.26	18/1590
	968	1	0%	-	-	0%	-	2527	100%	13.95	5.44	15/1333
ibm08	/301	2	0%	_	_	0%	_	1110	100%	14.16	5.40	17/1290
	/11 536	3	0%	_	_	0%	_	1958	100%	14.43	5.55	19/1309
ibm09	860	1	0%	_	_	0%	-	2273	100%	12.85	2.60	3/1495
	/253	2	0%	_	_	0%	_	2670	100%	12.57	3.77	17/1486
	/11008	3	0%	_	_	100%	34.48	6652	100%	12.98	3.54	14/1486
	809	1	100%	48.47	21.71	0%	_	2353	100%	33.25	11.63	9/2576
ibm10	/786	2	0%	_	_	Crashed	Crashed	Crashed	100%	34.23	18.00	14/2897
	/16334	3	0%	_	_	100%	53.64	2014	100%	36.59	16.52	9/2725
	1124	1	100%	20.87	33.87	0%	-	8070	100%	21.99	4.84	12/2218
ibm11	/373	2	0%	_	_	0%	_	4732	100%	22.13	4.96	8/2207
	/16985	3	0%	_	_	0%	_	2245	100%	22.83	4.67	7/2174
	582	1	0%	_	-	0%	-	3085	100%	29.72	10.95	20/2909
ibm12	/651	2	0%	_	_	0%	_	864	100%	31.53	7.71	18/3011
	/11 873	3	0%	_	-	0%	-	19952	100%	32.16	4.59	8/1957
	530	1	0%	-	-	0%	-	3401	100%	25.92	6.03	12/2553
ibm13	/424	2	100%	43.81	9.84	0%	-	3662	100%	25.46	3.79	10/2048
	/14 202	3	0%	-	-	0%	-	3201	100%	26.47	3.83	8/2095
	1021	1	100%	71.87	23.59	0%	-	4253	100%	50.83	9.69	30/2976
ibm14	/614	2	100%	55.99	35.65	0%	_	10373	100%	51.67	9.70	34/2971
	/26 675	3	100%	61.65	35.12	0%	-	4976	100%	53.71	9.70	36/2971
	1019	1	0%	_	_	0%	-	3634	100%	64.18	9.71	25/1651
ibm15	/393	2	0%	-	-	0%	-	6827	100%	63.17	9.13	19/1580
	/28 270	3	0%	-	-	0%	-	2902	100%	66.06	9.46	20/1623
	633	1	0%	-		Crashed	Crashed	Crashed	100%	56.88	16.79	18/3823
ibm16	/458	23	100%	88.33	16.55	0%	-	8928	100%	58.55	14.55	24/4833
	/21013	-	100%	98.77	22.94	0%	-	11675	100%	59.91	12.84	18/4093
	682	1	100%	102.45	41.75	Crashed	Crashed	Crashed	100%	95.92	10.43	32/3253
ibm17	/760	23	100%	96.46	46.63	0%	Combet	2250	100%	95.48	10.41	27/3252
	/30 556		100%	98.18	42.45	Crashed	Crashed	Crashed	100%	100.82	10.42	29/3252
ihm 10	658	1	100%	50.28	38.24	0%	_	1083	100%	49.12	7.93	42/3106
ibm18	/285 /21 191	2	100%	49.74 52.26	39.15 36.97	0%	_	4630 5262	100% 100%	49.29 51.39	7.97 7.97	41/3128 41/3128
		3										41/5128
	Normalized		0.43	1.28	3.28	0.12	1.72	789.79	1	1	1	

Pros and Cons of the Work

• Pros

- Massive runtime performance increase compared to SA solutions
- Scalable
- Works for both hard and soft blocks
- Cons
 - Several greedy algorithms
 - Lots of math involved
 - A final shape curve that doesn't have a valid solution requires the algorithm running until it does

Summary

- Reviewed the background of Deferred Decision Making
- Analyzed the technical specifications of DeFer
- Compared DeFer to other fixed-outline floorplanning solutions
- Discussed the pros and cons surrounding the algorithm