-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathstats.py
986 lines (789 loc) · 31.3 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
from __future__ import division,print_function
import sys,random, argparse
sys.dont_write_bytecode=True
class o():
"Anonymous container"
def __init__(i,**fields) :
i.override(fields)
def override(i,d): i.__dict__.update(d); return i
def __repr__(i):
d = i.__dict__
name = i.__class__.__name__
return name+'{'+' '.join([':%s %s' % (k,d[k])
for k in i.show()])+ '}'
def show(i):
return [k for k in sorted(i.__dict__.keys())
if not "_" in k]
The=o(cohen=0.3, small=3, epsilon=0.01,
width=50,lo=0,hi=100,conf=0.01,b=1000,a12=0.56)
parser = argparse.ArgumentParser(
description="Apply Scott-Knot test to data read from standard input")
p=parser.add_argument
p("--demo",default=False, action="store_true")
p("--cohen", type=float,
default=0.3, metavar='N',
help="too small if delta less than N*std of the data)")
p("--small",type=int, metavar="N",default=3,
help="too small if hold less than N items")
p("--epsilon", type=float, default=0.01,metavar="N",
help="a range is too small of its hi - lo < N")
p("--width",type=int,default=50,metavar="N",
help="width of quintile display")
p("--text",type=int,default=12,metavar="N",
help="width of text display")
p("--conf", type=float, default=0.01,metavar="N",
help="bootstrap tests with confidence 1-n")
p("--a12",type=float, default=0.56, metavar="N",
help="threshold for a12 test: disable,small,med,large=0,0.56,0.64,0.71")
args = parser.parse_args()
The.cohen = args.cohen
The.small = args.small
The.epsilon = args.epsilon
The.conf = args.conf
The.width = args.width + 0
The.a12 = args.a12 + 0
The.text = args.text + 0
"""
TODO
try:
opts, args = getopt.getopt(argv, "hg:d", ["help", "grammar="]) 2
except getopt.GetoptError: 3
usage() 4
sys.exit(2)
# Analysis of Experimental Data
This page is about the non-parametric statistical tests. It is also a chance for us to discuss a little
statistical theory.
## Before we begin...
Imagine the following example contain objective scores gained from different optimizers
_x1,x2,x3,x4,...etc_. Which results are ranked one, two, three etc...
### Lesson Zero
Some differences are obvious
"""
def rdiv0():
rdivDemo([
["x1",0.34, 0.49, 0.51, 0.6],
["x2",6, 7, 8, 9] ])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x1 , 51 , 11 (* | ), 0.34, 0.49, 0.51, 0.51, 0.60
2 , x2 , 800 , 200 ( | ---- *-- ), 6.00, 7.00, 8.00, 8.00, 9.00
### Lesson One
Some similarities are obvious...
"""
def rdiv1():
rdivDemo([
["x1",0.1, 0.2, 0.3, 0.4],
["x2",0.1, 0.2, 0.3, 0.4],
["x3",6, 7, 8, 9] ])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x1 , 30 , 20 (* | ), 0.10, 0.20, 0.30, 0.30, 0.40
1 , x2 , 30 , 20 (* | ), 0.10, 0.20, 0.30, 0.30, 0.40
2 , x3 , 800 , 200 ( | ---- *-- ), 6.00, 7.00, 8.00, 8.00, 9.00
### Lesson Two
Many results often clump into less-than-many ranks.
"""
def rdiv2():
rdivDemo([
["x1",0.34, 0.49, 0.51, 0.6],
["x2",0.6, 0.7, 0.8, 0.9],
["x3",0.15, 0.25, 0.4, 0.35],
["x4",0.6, 0.7, 0.8, 0.9],
["x5",0.1, 0.2, 0.3, 0.4] ])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x5 , 30 , 20 (--- *--- | ), 0.10, 0.20, 0.30, 0.30, 0.40
1 , x3 , 35 , 15 ( ---- *- | ), 0.15, 0.25, 0.35, 0.35, 0.40
2 , x1 , 51 , 11 ( ------ *-- ), 0.34, 0.49, 0.51, 0.51, 0.60
3 , x2 , 80 , 20 ( | ---- *-- ), 0.60, 0.70, 0.80, 0.80, 0.90
3 , x4 , 80 , 20 ( | ---- *-- ), 0.60, 0.70, 0.80, 0.80, 0.90
### Lesson Three
Some results even clump into one rank (the great null result).
"""
def rdiv3():
rdivDemo([
["x1",101, 100, 99, 101, 99.5],
["x2",101, 100, 99, 101, 100],
["x3",101, 100, 99.5, 101, 99],
["x4",101, 100, 99, 101, 100] ])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x1 , 10000 , 150 (------- *| ),99.00, 99.50, 100.00, 101.00, 101.00
1 , x2 , 10000 , 100 (--------------*| ),99.00, 100.00, 100.00, 101.00, 101.00
1 , x3 , 10000 , 150 (------- *| ),99.00, 99.50, 100.00, 101.00, 101.00
1 , x4 , 10000 , 100 (--------------*| ),99.00, 100.00, 100.00, 101.00, 101.00
#### Lesson Four
Heh? Where's lesson four?
### Lesson Five
Some things had better clump to one thing (sanity check for the ranker).
"""
def rdiv5():
rdivDemo([
["x1",11,11,11],
["x2",11,11,11],
["x3",11,11,11]])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x1 , 1100 , 0 (* | ),11.00, 11.00, 11.00, 11.00, 11.00
1 , x2 , 1100 , 0 (* | ),11.00, 11.00, 11.00, 11.00, 11.00
1 , x3 , 1100 , 0 (* | ),11.00, 11.00, 11.00, 11.00, 11.00
### Lesson Six
Some things had better clump to one thing (sanity check for the ranker).
"""
def rdiv6():
rdivDemo([
["x1",11,11,11],
["x2",11,11,11],
["x4",32,33,34,35]])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x1 , 1100 , 0 (* | ),11.00, 11.00, 11.00, 11.00, 11.00
1 , x2 , 1100 , 0 (* | ),11.00, 11.00, 11.00, 11.00, 11.00
2 , x4 , 3400 , 200 ( | - * ),32.00, 33.00, 34.00, 34.00, 35.00
### Lesson Seven
All the above scales to succinct summaries of hundreds, thousands, millions of numbers
"""
def rdiv7():
rdivDemo([
["x1"] + [rand()**0.5 for _ in range(256)],
["x2"] + [rand()**2 for _ in range(256)],
["x3"] + [rand() for _ in range(256)]
])
"""
rank , name , med , iqr
----------------------------------------------------
1 , x2 , 25 , 50 (-- * -|--------- ), 0.01, 0.09, 0.25, 0.47, 0.86
2 , x3 , 49 , 47 ( ------ *| ------- ), 0.08, 0.29, 0.49, 0.66, 0.89
3 , x1 , 73 , 37 ( ------|- * --- ), 0.32, 0.57, 0.73, 0.86, 0.95
## So, How to Rank?
For the most part, we are concerned with very high-level issues that
strike to the heart of the human condition:
- What does it mean to find controlling principles in the world?
- How can we find those principles better, faster, cheaper?
But sometimes we have to leave those lofty heights to discuss more
pragmatic issues. Specifically, how to present the results of an
optimizer and, sometimes, how to compare and rank the results from
different optimizers.
Note that there is no best way, and often the way we present results
depends on our goals, the data we are procesing, and the audience we are
trying to reach. So the statistical methods discussed below are more
like first-pass approximations to something you may have to change
extensively, depending on the task at hand.
In any case, in order to have at least one report that that you quickly
generate, then....
### Theory
The test that one optimizer is better than another can be recast as four
checks on the *distribution* of performance scores.
1. Visualize the data, somehow.
2. Check if the central tendency of one distribution is *better* than
the other; e.g. compare their median values.
3. Check the different between the central tendencies is not some
*small effect*.
4. Check if the distributions are *significantly different*;
The first step is very important. Stats should always be used as sanity
checks on intuitions gained by other means. So look at the data before
making, possibly bogus, inferences from it. For example, here are some
charts showing the effects on a population as we apply more and more of
some treatment. Note that the mean of the populations remains unchanged,
yet we might still endorse the treatment since it reduces the
uncertainty associated with each population.
![img](img/index_customers_clip_image002.jpg)
Note that 2 and 3 and 4 must be all be true to assert that one thing
generates better numbers than another. For example, one bogus
conclusion would be to just check median values (step2) and ignore
steps3 and steps4. _BAD IDEA_. Medians can be very misleading unless
you consider the overall distributions (as done in step3 and step4).
(As an aside, note that the above requests a check for _median_,
not _mean_. This is required since, all things considered,
means do not mean much, especially for highly skewed distributions.
For example, Bill Gates and 35 homeless people are in the same room.
Their mean annual income is over a billion dollars each- which is
a number that characterized neither Mr. Gates or the homeless people.
On the other hand, the median income of that population is close to zero-
which is a number that characterizes most of that population. )
In practice, step2,step3,step4 are
listed in increasing order of effort (e.g. the _bootstrap sample_ method
discussed later in this subject is an example of step4, and this
can take a while to compute). So pragmatically, it is useful
to explore the above in the order step1 then step2 then step3 then step4 (and _stopping_
along the way if any part fails). For example,
one possible bogus inference would be to apply step4 without
the step3 since if the *small effect* test fails, then the third
*significance* test is misleading.
For example, returning to the above distributions, note the large
overlap in the top two curves in those plots. When distributions exhibit
a very large overlap, it is very hard to determine if one is really
different to the other. So large variances can mean that even if the
means are *better*, we cannot really say that the values in one
distribution are usually better than the other.
### Step1: Visualization
Suppose we had two optimizers which in a 10 repeated runs generated
performance from two models:
1: def _tile2():
2: def show(lst):
3: return xtile(lst,lo=0, hi=1,width=25,
4: show= lambda s:" %3.2f" % s)
5: print "one", show([0.21, 0.29, 0.28, 0.32, 0.32,
6: 0.28, 0.29, 0.41, 0.42, 0.48])
7: print "two", show([0.71, 0.92, 0.80, 0.79, 0.78,
8: 0.9, 0.71, 0.82, 0.79, 0.98])
When faced with new data, always chant the following mantra:
- *First* visualize it to get some intuitions;
- *Then* apply some statistics to double check those intuitions.
That is, it is *strong recommended* that, prior doing any statistical
work, an analyst generates a visualization of the data. Percentile
charts a simple way to display very large populations in very little
space. For example, here are our results from *one*, displayed on a
range from 0.00 to 1.00.
one * --| , 0.28, 0.29, 0.32, 0.41, 0.48
two | -- * -- , 0.71, 0.79, 0.80, 0.90, 0.98
In this percentile chart, the 2nd and 3rd percentiles as little dashes
left and right of the median value, shown with a *"\*"*, (learner
*two*'s 3rd percentile is so small that it actually disappears in this
display). The vertical bar *"|"* shows half way between the display's
min and max (in this case, that would be (0.0+1.00)/2= 0.50)
#### Xtile
The advantage of percentile charts is that we can show a lot of data in
very little space.
For example, here's an example where the _xtile_ Python function
shows 2000 numbers on two lines:
- Quintiles divide the data into the 10th, 30th, 50th, 70th, 90th
percentile.
- Dashes (*"-"*) mark the range (10,30)th and (70,90)th percentiles;
- White space marks the ranges (30,50)th and (50,70)th percentiles.
Consider two distributions, of 1000 samples each: one shows square root
of a *rand()* and the other shows the square of a *rand()*.
10: def _tile() :
11: import random
12: r = random.random
13: def show(lst):
14: return xtile(lst,lo=0, hi=1,width=25,
15: show= lambda s:" %3.2f" % s)
16: print "one", show([r()*0.5 for x in range(1000)])
17: print "two", show([r()2 for x in range(1000)])
In the following quintile charts, we show these distributions:
- The range is 0 to 1.
- One line shows the square of 1000 random numbers;
- The other line shows the square root of 1000 random numbers;
Note the brevity of the display:
one -----| * --- , 0.32, 0.55, 0.70, 0.84, 0.95
two -- * |-------- , 0.01, 0.10, 0.27, 0.51, 0.85
As before, the median value, shown with a *"\*"*; and the point half-way
between min and max (in this case, 0.5) is shown as a vertical bar
*"|"*.
### Step2: Check Medians
The median of a list is the middle item of the sorted values, if the list is of an odd size.
If the list size is even, the median is the two values either side of the middle:
def median(lst,ordered=False):
lst = lst if ordered else sorted(lst)
n = len(lst)
p = n // 2
if (n % 2): return lst[p]
p,q = p-1,p
q = max(0,(min(q,n)))
return (lst[p] + lst[q]) * 0.5
### Step3: Effect size
An _effect size_ test is a sanity check that can be summarizes as follows:
* Don't sweat the small stuff;
I.e. ignore small differences between items in the samples.
My
preferred test for *small effect* has:
- a simple intuition;
- which makes no assumptions about (say) Gaussian assumptions;
- and which has a solid lineage in the literature.
Such a test is [Vargha and Delaney][vd00]'s A12 statistic.
The statistic was
proposed in Vargha and Delaney's 2000 paper was endorsed in many places
including in [Acruci and Briad][ab11]'s ICSE 2011 paper.
After I describe it to you, you will wonder why anyone would ever want
to use anything else.
[vd00]: http://jeb.sagepub.com/content/25/2/101.short "A. Vargha and H. D. Delaney. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2):101-132, 2000"
[ab11]: http://goo.gl/4N34gk "Andrea Arcuri, Lionel C. Briand: A practical guide for using statistical tests to assess randomized algorithms in software engineering. ICSE 2011: 1-10"
Given a performance measure seen in *m* measures
of *X* and *n* measures of *Y*, the A12 statistics measures the
probability that running algorithm *X* yields higher values than running
another algorithm *Y*. Specifically, it counts how often we seen larger
numbers in *X* than *Y* (and if the same numbers are found in both, we
add a half mark):
a12= #(X.i > Y.j) / (n*m) + .5#(X.i == Y.j) / (n*m)
According to Vargha and Delaney, a small, medium, large difference
between two populations is:
- *large* if `a12` is over 71%;
- *medium* if `a12` is over 64%;
- *small* if `a12` is 56%, or less.
A naive version of this code is shown here in the _ab12slow_ function. While simple to
code, this _ab12slow_ function runs in polynomial time (since for each item in _lst1_,
it runs over all of _lst2_):
"""
def _ab12():
def a12slow(lst1,lst2):
more = same = 0.0
for x in sorted(lst1):
for y in sorted(lst2):
if x==y :
same += 1
elif x > y :
more += 1
return (more + 0.5*same) / (len(lst1)*len(lst2))
random.seed(1)
l1 = [random.random() for x in range(5000)]
more = [random.random()*2 for x in range(5000)]
l2 = [random.random() for x in range(5000)]
less = [random.random()/2.0 for x in range(5000)]
for tag, one,two in [("1less",l1,more),
("1more",more,less),("same",l1,l2)]:
t1 = msecs(lambda : a12(l1,less))
t2 = msecs(lambda : a12slow(l1,less))
print("\n",tag,"\n",t1,a12(one,two))
print(t2, a12slow(one,two))
"""
Note that the test code \__ab12_ shows that our fast and slow method generate the same A12 score, but the
fast way does so thousands of times faster. The following tests show runtimes for lists of 5000 numbers:
experimemt msecs(fast) a12(fast) msecs(slow) a12(slow)
1less 13 0.257 9382 0.257
1more 20 0.868 9869 0.868
same 11 0,502 9937 0.502
## Significance Tests
### Standard Utils
Didn't we do this before?
"""
"""
Misc functions:
"""
rand = random.random
any = random.choice
seed = random.seed
exp = lambda n: math.e**n
ln = lambda n: math.log(n,math.e)
g = lambda n: round(n,2)
def median(lst,ordered=False):
if not ordered: lst= sorted(lst)
n = len(lst)
p = n//2
if n % 2: return lst[p]
q = p - 1
q = max(0,min(q,n))
return (lst[p] + lst[q])/2
def msecs(f):
import time
t1 = time.time()
f()
return (time.time() - t1) * 1000
def pairs(lst):
"Return all pairs of items i,i+1 from a list."
last=lst[0]
for i in lst[1:]:
yield last,i
last = i
def xtile(lst,lo=The.lo,hi=The.hi,width=The.width,
chops=[0.1 ,0.3,0.5,0.7,0.9],
marks=["-" ," "," ","-"," "],
bar="|",star="*",show=" %3.0f"):
"""The function _xtile_ takes a list of (possibly)
unsorted numbers and presents them as a horizontal
xtile chart (in ascii format). The default is a
contracted _quintile_ that shows the
10,30,50,70,90 breaks in the data (but this can be
changed- see the optional flags of the function).
"""
def pos(p) : return ordered[int(len(lst)*p)]
def place(x) :
return int(width*float((x - lo))/(hi - lo+0.00001))
def pretty(lst) :
return ', '.join([show % x for x in lst])
ordered = sorted(lst)
lo = min(lo,ordered[0])
hi = max(hi,ordered[-1])
what = [pos(p) for p in chops]
where = [place(n) for n in what]
out = [" "] * width
for one,two in pairs(where):
for i in range(one,two):
out[i] = marks[0]
marks = marks[1:]
out[int(width/2)] = bar
out[place(pos(0.5))] = star
return '('+''.join(out) + ")," + pretty(what)
def _tileX() :
import random
random.seed(1)
nums = [random.random()**2 for _ in range(100)]
print(xtile(nums,lo=0,hi=1.0,width=25,show=" %5.2f"))
"""````
### Standard Accumulator for Numbers
Note the _lt_ method: this accumulator can be sorted by median values.
Warning: this accumulator keeps _all_ numbers. Might be better to use
a bounded cache.
"""
class Num:
"An Accumulator for numbers"
def __init__(i,name,inits=[]):
i.n = i.m2 = i.mu = 0.0
i.all=[]
i._median=None
i.name = name
i.rank = 0
for x in inits: i.add(x)
def s(i) : return (i.m2/(i.n - 1))**0.5
def add(i,x):
i._median=None
i.n += 1
i.all += [x]
delta = x - i.mu
i.mu += delta*1.0/i.n
i.m2 += delta*(x - i.mu)
def __add__(i,j):
return Num(i.name + j.name,i.all + j.all)
def quartiles(i):
def p(x) : return int(g(xs[x]))
i.median()
xs = i.all
n = int(len(xs)*0.25)
return p(n) , p(2*n) , p(3*n)
def median(i):
if not i._median:
i.all = sorted(i.all)
i._median=median(i.all)
return i._median
def __lt__(i,j):
return i.median() < j.median()
def spread(i):
i.all=sorted(i.all)
n1=i.n*0.25
n2=i.n*0.75
if len(i.all) <= 1:
return 0
if len(i.all) == 2:
return i.all[1] - i.all[0]
else:
return i.all[int(n2)] - i.all[int(n1)]
"""
### The A12 Effect Size Test
As above
"""
def a12slow(lst1,lst2):
"how often is x in lst1 more than y in lst2?"
more = same = 0.0
for x in lst1:
for y in lst2:
if x == y : same += 1
elif x > y : more += 1
x= (more + 0.5*same) / (len(lst1)*len(lst2))
return x
def a12(lst1,lst2):
"how often is x in lst1 more than y in lst2?"
def loop(t,t1,t2):
while t1.j < t1.n and t2.j < t2.n:
h1 = t1.l[t1.j]
h2 = t2.l[t2.j]
h3 = t2.l[t2.j+1] if t2.j+1 < t2.n else None
if h1> h2:
t1.j += 1; t1.gt += t2.n - t2.j
elif h1 == h2:
if h3 and h1 > h3 :
t1.gt += t2.n - t2.j - 1
t1.j += 1; t1.eq += 1; t2.eq += 1
else:
t2,t1 = t1,t2
return t.gt*1.0, t.eq*1.0
#--------------------------
lst1 = sorted(lst1, reverse=True)
lst2 = sorted(lst2, reverse=True)
n1 = len(lst1)
n2 = len(lst2)
t1 = o(l=lst1,j=0,eq=0,gt=0,n=n1)
t2 = o(l=lst2,j=0,eq=0,gt=0,n=n2)
gt,eq= loop(t1, t1, t2)
return gt/(n1*n2) + eq/2/(n1*n2) >= The.a12
def _a12():
def f1(): return a12slow(l1,l2)
def f2(): return a12(l1,l2)
for n in [100,200,400,800,1600,3200,6400]:
l1 = [rand() for _ in xrange(n)]
l2 = [rand() for _ in xrange(n)]
t1 = msecs(f1)
t2 = msecs(f2)
print(n, g(f1()),g(f2()),int((t1/t2)))
"""
n a12(fast) a12(slow) tfast / tslow
--- --------------- -------------- --------------
100 0.53 0.53 4
200 0.48 0.48 6
400 0.49 0.49 28
800 0.5 0.5 26
1600 0.51 0.51 72
3200 0.49 0.49 109
6400 0.5 0.5 244
````
## Non-Parametric Hypothesis Testing
The following _bootstrap_ method was introduced in
1979 by Bradley Efron at Stanford University. It
was inspired by earlier work on the
jackknife.
Improved estimates of the variance were [developed later][efron01].
[efron01]: http://goo.gl/14n8Wf "Bradley Efron and R.J. Tibshirani. An Introduction to the Bootstrap (Chapman & Hall/CRC Monographs on Statistics & Applied Probability), 1993"
To check if two populations _(y0,z0)_
are different, many times sample with replacement
from both to generate _(y1,z1), (y2,z2), (y3,z3)_.. etc.
"""
def sampleWithReplacement(lst):
"returns a list same size as list"
def any(n) : return random.uniform(0,n)
def one(lst): return lst[ int(any(len(lst))) ]
return [one(lst) for _ in lst]
"""
Then, for all those samples,
check if some *testStatistic* in the original pair
hold for all the other pairs. If it does more than (say) 99%
of the time, then we are 99% confident in that the
populations are the same.
In such a _bootstrap_ hypothesis test, the *some property*
is the difference between the two populations, muted by the
joint standard deviation of the populations.
"""
def testStatistic(y,z):
"""Checks if two means are different, tempered
by the sample size of 'y' and 'z'"""
tmp1 = tmp2 = 0
for y1 in y.all: tmp1 += (y1 - y.mu)**2
for z1 in z.all: tmp2 += (z1 - z.mu)**2
s1 = (float(tmp1)/(y.n - 1))**0.5
s2 = (float(tmp2)/(z.n - 1))**0.5
delta = z.mu - y.mu
if s1+s2:
delta = delta/((s1/y.n + s2/z.n)**0.5)
return delta
"""
The rest is just details:
+ Efron advises
to make the mean of the populations the same (see
the _yhat,zhat_ stuff shown below).
+ The class _total_ is a just a quick and dirty accumulation class.
+ For more details see [the Efron text][efron01].
"""
def bootstrap(y0,z0,conf=The.conf,b=The.b):
"""The bootstrap hypothesis test from
p220 to 223 of Efron's book 'An
introduction to the boostrap."""
class total():
"quick and dirty data collector"
def __init__(i,some=[]):
i.sum = i.n = i.mu = 0 ; i.all=[]
for one in some: i.put(one)
def put(i,x):
i.all.append(x);
i.sum +=x; i.n += 1; i.mu = float(i.sum)/i.n
def __add__(i1,i2): return total(i1.all + i2.all)
y, z = total(y0), total(z0)
x = y + z
tobs = testStatistic(y,z)
yhat = [y1 - y.mu + x.mu for y1 in y.all]
zhat = [z1 - z.mu + x.mu for z1 in z.all]
bigger = 0.0
for i in range(b):
if testStatistic(total(sampleWithReplacement(yhat)),
total(sampleWithReplacement(zhat))) > tobs:
bigger += 1
return bigger / b < conf
"""
#### Examples
"""
def _bootstraped():
def worker(n=1000,
mu1=10, sigma1=1,
mu2=10.2, sigma2=1):
def g(mu,sigma) : return random.gauss(mu,sigma)
x = [g(mu1,sigma1) for i in range(n)]
y = [g(mu2,sigma2) for i in range(n)]
return n,mu1,sigma1,mu2,sigma2,\
'different' if bootstrap(x,y) else 'same'
# very different means, same std
print(worker(mu1=10, sigma1=10,
mu2=100, sigma2=10))
# similar means and std
print(worker(mu1= 10.1, sigma1=1,
mu2= 10.2, sigma2=1))
# slightly different means, same std
print(worker(mu1= 10.1, sigma1= 1,
mu2= 10.8, sigma2= 1))
# different in mu eater by large std
print(worker(mu1= 10.1, sigma1= 10,
mu2= 10.8, sigma2= 1))
"""
Output:
"""
#_bootstraped()
(1000, 10, 10, 100, 10, 'different')
(1000, 10.1, 1, 10.2, 1, 'same')
(1000, 10.1, 1, 10.8, 1, 'different')
(1000, 10.1, 10, 10.8, 1, 'same')
"""
Warning- the above took 8 seconds to generate since we used 1000 bootstraps.
As to how many bootstraps are enough, that depends on the data. There are
results saying 200 to 400 are enough but, since I am suspicious man, I run it for 1000.
Which means the runtimes associated with bootstrapping is a significant issue.
To reduce that runtime, I avoid things like an all-pairs comparison of all treatments
(see below: Scott-knott). Also, BEFORE I do the boostrap, I first run
the effect size test (and only go to bootstrapping in effect size passes:
"""
def different(l1,l2):
#return bootstrap(l1,l2) and a12(l2,l1)
return a12(l2,l1) and bootstrap(l1,l2)
"""
## Saner Hypothesis Testing
The following code, which you should use verbatim does the following:
+ All treatments are clustered into _ranks_. In practice, dozens
of treatments end up generating just a handful of ranks.
+ The numbers of calls to the hypothesis tests are minimized:
+ Treatments are sorted by their median value.
+ Treatments are divided into two groups such that the
expected value of the mean values _after_ the split is minimized;
+ Hypothesis tests are called to test if the two groups are truly difference.
+ All hypothesis tests are non-parametric and include (1) effect size tests
and (2) tests for statistically significant numbers;
+ Slow bootstraps are executed if the faster _A12_ tests are passed;
In practice, this means that the hypothesis tests (with confidence of say, 95%)
are called on only a logarithmic number of times. So...
+ With this method, 16 treatments can be studied using less than _∑<sub>1,2,4,8,16</sub>log<sub>2</sub>i =15_ hypothesis tests and confidence _0.99<sup>15</sup>=0.86_.
+ But if did this with the 120 all-pairs comparisons of the 16 treatments, we would have total confidence _0.99<sup>120</sup>=0.30.
For examples on using this code, see _rdivDemo_ (below).
"""
def scottknott(data,cohen=The.cohen,small=The.small,useA12=The.a12 > 0, epsilon=The.epsilon):
"""Recursively split data, maximizing delta of
the expected value of the mean before and
after the splits.
Reject splits with under 3 items"""
all = reduce(lambda x,y:x+y,data)
same = lambda l,r: abs(l.median() - r.median()) <= all.s()*cohen
if useA12:
same = lambda l, r: not different(l.all,r.all)
big = lambda n: n > small
return rdiv(data,all,minMu,big,same,epsilon)
def rdiv(data, # a list of class Nums
all, # all the data combined into one num
div, # function: find the best split
big, # function: rejects small splits
same, # function: rejects similar splits
epsilon): # small enough to split two parts
"""Looks for ways to split sorted data,
Recurses into each split. Assigns a 'rank' number
to all the leaf splits found in this way.
"""
def recurse(parts,all,rank=0):
"Split, then recurse on each part."
cut,left,right = maybeIgnore(div(parts,all,big,epsilon),
same,parts)
if cut:
# if cut, rank "right" higher than "left"
rank = recurse(parts[:cut],left,rank) + 1
rank = recurse(parts[cut:],right,rank)
else:
# if no cut, then all get same rank
for part in parts:
part.rank = rank
return rank
recurse(sorted(data),all)
return data
def maybeIgnore((cut,left,right), same,parts):
if cut:
if same(sum(parts[:cut],Num('upto')),
sum(parts[cut:],Num('above'))):
cut = left = right = None
return cut,left,right
def minMu(parts,all,big,epsilon):
"""Find a cut in the parts that maximizes
the expected value of the difference in
the mean before and after the cut.
Reject splits that are insignificantly
different or that generate very small subsets.
"""
cut,left,right = None,None,None
before, mu = 0, all.mu
for i,l,r in leftRight(parts,epsilon):
if big(l.n) and big(r.n):
n = all.n * 1.0
now = l.n/n*(mu- l.mu)**2 + r.n/n*(mu- r.mu)**2
if now > before:
before,cut,left,right = now,i,l,r
return cut,left,right
def leftRight(parts,epsilon=The.epsilon):
"""Iterator. For all items in 'parts',
return everything to the left and everything
from here to the end. For reasons of
efficiency, take a first pass over the data
to pre-compute and cache right-hand-sides
"""
rights = {}
n = j = len(parts) - 1
while j > 0:
rights[j] = parts[j]
if j < n: rights[j] += rights[j+1]
j -=1
left = parts[0]
for i,one in enumerate(parts):
if i> 0:
if parts[i]._median - parts[i-1]._median > epsilon:
yield i,left,rights[i]
left += one
"""
## Putting it All Together
Driver for the demos:
"""
def rdivDemo(data):
def zzz(x):
return int(100 * (x - lo) / (hi - lo + 0.00001))
data = map(lambda lst:Num(lst[0],lst[1:]),
data)
print("")
ranks=[]
for x in scottknott(data,useA12=True):
ranks += [(x.rank,x.median(),x)]
all=[]
for _,__,x in sorted(ranks): all += x.all
all = sorted(all)
lo, hi = all[0], all[-1]
line = "----------------------------------------------------"
last = None
formatStr = '%%4s , %%%ss , %%s , %%4s ' % The.text
print((formatStr % \
('rank', 'name', 'med', 'iqr')) + "\n"+ line)
for _,__,x in sorted(ranks):
q1,q2,q3 = x.quartiles()
print((formatStr % \
(x.rank+1, x.name, q2, q3 - q1)) + \
xtile(x.all,lo=lo,hi=hi,width=30,show="%5.2f"))
last = x.rank
def _rdivs():
seed(1)
rdiv0(); rdiv1(); rdiv2(); rdiv3();
rdiv5(); rdiv6(); print("###"); rdiv7()
####################################
def thing(x):
"Numbers become numbers; every other x is a symbol."
try: return int(x)
except ValueError:
try: return float(x)
except ValueError:
return x
def main():
log=None
all={}
now=[]
for line in sys.stdin:
for word in line.split():
word = thing(word)
if isinstance(word,str):
now = all[word] = all.get(word,[])
else:
now += [word]
rdivDemo( [ [k] + v for k,v in all.items() ] )
if args.demo:
_rdivs()
else:
main()