-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgraph.gv
58 lines (52 loc) · 3.17 KB
/
graph.gv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
digraph algebraic_structures {
node [ margin = "0.2", shape = box ]
rankdir = LR
size = "14"
Magma [ label = <<b>Magma (a, +)</b><br/>(+) :: a -> a -> a> ]
Semigroup [ label = <<b>Semigroup (a, +)</b><br/>∀a b c. (a + b) + c = a + (b + c)> ]
Monoid [ label = <<b>Monoid (a, +, 0)</b><br/>0 :: a<br/>∀a. a + 0 = 0 + a = a> ]
Group [ label = <<b>Group (a, +, 0)</b><br/>∀a ∃b. a + b = b + a = 0> ]
CommutativeMonoid [ label = <<b>Commutative Monoid (a, +, 0)</b><br/>∀a b. a + b = b + a> ]
Abelian [ label = <<b>Abelian (a, +, 0)</b>> ]
Magma -> Semigroup
Semigroup -> Monoid
Monoid -> Group
Monoid -> CommutativeMonoid
Group -> Abelian
CommutativeMonoid -> Abelian
RingLike [ label = <<b>Ring-Like (a, +, *)</b><br/>(+) :: a -> a -> a<br/>(*) :: a -> a -> a<br/>Monoid (a, +, 0)<br/>Semigroup (a, *)> ]
LeftSeminearring [ label = <<b>Left-Seminearring (a, +, *, 0)</b><br/>a * (b + c) = a * b + a * c<br/>a * 0 = 0> ]
RightSeminearring [ label = <<b>Right-Seminearring (a, +, *, 0)</b><br/>(a + b) * c = a * c + b * c<br/>0 * a = 0> ]
LeftNearring [ label = <<b>Left-Nearring (a, +, *, 0)</b><br/>Group (a, +, 0)> ]
RightNearring [ label = <<b>Right-Nearring (a, +, *, 0)</b><br/>Group (a, +, 0)> ]
Semiring [ label = <<b>Semiring (a, +, *, 0, 1)</b><br/>Commutative Monoid (a, +, 0)<br/>Monoid (a, *, 1)> ]
Ring [ label = <<b>Ring (a, +, *, 0, 1)</b>> ]
CommutativeRing [ label = <<b>Commutative Ring (a, +, *, 0, 1)</b><br/>Commutative Monoid (a, *, 1)> ]
DivisionRing [ label = <<b>Division Ring (a, +, *, 0, 1)</b><br/>Group (a - {0}, *, 1)> ]
Field [ label = <<b>Field (a, +, *, 0, 1)</b>> ]
RingLike -> LeftSeminearring
RingLike -> RightSeminearring
LeftSeminearring -> LeftNearring
RightSeminearring -> RightNearring
LeftSeminearring -> Semiring
RightSeminearring -> Semiring
LeftNearring -> Ring
RightNearring -> Ring
Semiring -> Ring
Ring -> CommutativeRing
Ring -> DivisionRing
CommutativeRing -> Field
DivisionRing -> Field
Eq [ label = <<b>Equivalence (a, ==)</b><br/>(==) :: a -> a -> Bool<br/>∀a. a == a<br/>∀a b. a == b = b == a<br/>∀a b c. a == b and b == c → a == c> ]
POrd [ label = <<b>Partial Order (a, ≥)</b><br/>(≥) :: a -> a -> Bool<br/>a == b = a ≥ b and b ≥ a<br/>∀a. a ≥ a<br/>∀a b c. a ≥ b and b ≥ c → a ≥ c> ]
MeetSemilattice [ label = <<b>Meet Semilattice (a, ∧, ==)</b><br/>∀a b c. a ∧ (b ∧ c) = (a ∧ b) ∧ c<br/>∀a b. a ∧ b = b ∧ a<br/>∀a. a ∧ a = a<br/>a ≥ b = a ∧ b == b> ]
JoinSemilattice [ label = <<b>Join Semilattice (a, ∨, ==)</b><br/>∀a b c. a ∨ (b ∨ c) = (a ∨ b) ∨ c<br/>∀a b. a ∨ b = b ∨ a<br/>∀a. a ∨ a = a<br/>a ≥ b = a ∨ b == a> ]
Lattice [ label =<<b>Lattice (a, ∧, ∨, ==)</b>> ]
Ord [ label = <<b>Total Order (a, ≥)</b><br/>∀a b. a ≥ b or b ≥ a<br/>a ∧ b | a ≥ b → b | b ≥ a → a<br/>a ∨ b | a ≥ b → a | b ≥ a → b> ]
Eq -> POrd
POrd -> MeetSemilattice
POrd -> JoinSemilattice
MeetSemilattice -> Lattice
JoinSemilattice -> Lattice
Lattice -> Ord
}