-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot.py
196 lines (151 loc) · 7.75 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import matplotlib.pyplot as plt
from model import Model
from agent import Agent
from utils import run_game
import random
import numpy as np
import os
class Diagnostics:
def __init__(self, run_length=50, training_run_length=200):
self.run_length = run_length
self.training_run_length = training_run_length
self.xo_outcomes = [[], [], []]
self.model_outcomes = [[], [], []]
self.rewards = []
self.reward_avg = []
self.reward_deltas = []
self.gating_indices = []
self.train_gating_indices = []
self.training_rewards = []
self.training_avg = []
def update_xo(self, x_outcome, o_outcome):
self.xo_outcomes[0].append(x_outcome)
self.xo_outcomes[1].append(o_outcome)
self.xo_outcomes[2].append(1 - x_outcome - o_outcome)
def update_outcome(self, train_outcome, hof_outcome):
self.model_outcomes[0].append(train_outcome)
self.model_outcomes[1].append(hof_outcome)
self.model_outcomes[2].append(1 - train_outcome - hof_outcome)
def update_training(self, reward):
n = min(self.training_run_length, len(self.training_rewards))
self.training_rewards.append(reward)
self.training_avg.append(np.mean(self.training_rewards[-n:]) if n > 0 else 0)
def update_reward(self, reward):
n = min(self.run_length, len(self.rewards))
self.rewards.append(reward)
self.reward_avg.append(np.mean(self.rewards[-n:]) if n > 0 else 0)
self.reward_deltas.append(np.mean(self.rewards[-(n//2):]) - np.mean(self.rewards[-n:-(n//2)]) if n > 1 else 0)
def add_gate_ind(self):
self.gating_indices.append(len(self.rewards) - 1)
self.train_gating_indices.append(len(self.training_rewards) - 1)
def get_recent_performance(self):
if len(self.rewards) == 0:
return 0, 0
return self.reward_avg[-1], self.reward_deltas[-1]
def plot_wins(outcomes, model_name, players):
# We don't plot total wins for each player bc the graph would always increase, making performance evaluation harder.
# Instead, we plot runs: how many of the previous n games were won. This way, if a model begins performing worse, its line will decrease.
player1_wins, player2_wins, ties = [], [], []
run_totals = [0, 0, 0]
num_games = len(outcomes)
run_length = 100
for i, outcome in enumerate(outcomes):
if i < run_length:
run_totals[outcome] += 1
else:
player1_wins.append(run_totals[1])
player2_wins.append(run_totals[-1])
ties.append(run_totals[0])
run_totals[outcome] += 1
run_totals[outcomes[i - run_length]] -= 1
game = range(run_length, len(player1_wins) + run_length)
plt.plot(game, player1_wins, label="{} wins".format(players[0]))
plt.plot(game, player2_wins, label="{} wins".format(players[1]))
plt.plot(game, ties, label="Ties")
plt.legend()
plt.title("{}: {} diagnostic games".format(model_name, num_games))
plt.xlabel("Game #")
plt.ylabel("Wins out of previous {} games".format(run_length))
# Vertical lines where the model was gated
def add_gating_markers(gating_indices):
for ind in gating_indices:
plt.axvline(x=ind, c='red')
# Displays a histogram of the model iterations sampled from the hall of fame
def sample_histogram(sample_history, bins=100):
plt.hist(sample_history, bins)
plt.title("Sampling of Model Indices from HOF")
# 1v1 matrix for historical models: ideally, newer versions beating earlier ones
def winrate_matrix(mnk, hof_dir, num_games, step):
print("Calculating winrate matrix... (may take a while)")
matrix = np.zeros((num_games // step, num_games // step))
for i in range(0, num_games, step):
for j in range(0, num_games, step):
model_i = Model(mnk, location="{}/{}".format(hof_dir, i))
model_j = Model(mnk, location="{}/{}".format(hof_dir, j))
side_i = 1
side_j = side_i * -1
value = run_game(Agent(model_i, side_i), Agent(model_j, side_j))[0]
matrix[i // step, j // step] = value
return matrix
def get_moving_avg(data, run_length=50):
arr = []
for i in range(len(data)):
avg = sum(data[max(0, i - run_length):i+1]) / min(run_length, (i + 1))
arr.append(avg)
return arr
def save_plots(mnk, hof, plots_dir, hof_dir, model_name, diagnostics):
# Create model's plots folder
if not os.path.isdir(plots_dir):
os.makedirs(plots_dir)
# Graph and save each plot
plt.plot(range(len(diagnostics.rewards)), np.array(diagnostics.reward_avg))
add_gating_markers(diagnostics.gating_indices)
plt.title("{}: Reward for {} diagnostic games".format(model_name, len(diagnostics.rewards)+1))
plt.xlabel("Game #")
plt.ylabel("Cumulative reward over previous {} games".format(diagnostics.run_length))
plt.savefig("{}/Reward.png".format(plots_dir))
plt.clf()
plt.plot(range(len(diagnostics.rewards)), np.array(diagnostics.reward_deltas))
add_gating_markers(diagnostics.gating_indices)
plt.title("{}: Cumulative reward derivative for {} diagnostic games".format(model_name, len(diagnostics.rewards)+1))
plt.xlabel("Game #")
plt.ylabel("Difference in cumulative reward for previous two {} length runs".format(diagnostics.run_length))
plt.savefig("{}/Improvement.png".format(plots_dir))
plt.clf()
sample_histogram(hof.sample_history, hof.pop_size if hof.pop_size < 40 else 20)
plt.savefig("{}/Sampling.png".format(plots_dir))
plt.clf()
plt.figure()
plt.plot(range(len(diagnostics.rewards)), get_moving_avg(diagnostics.xo_outcomes[0], run_length=diagnostics.run_length), label="X")
plt.plot(range(len(diagnostics.rewards)), get_moving_avg(diagnostics.xo_outcomes[1], run_length=diagnostics.run_length), label="O")
plt.plot(range(len(diagnostics.rewards)), get_moving_avg(diagnostics.xo_outcomes[2], run_length=diagnostics.run_length), label="Tie")
plt.legend()
plt.title("{}: XO wins for {} diagnostic games".format(model_name, len(diagnostics.rewards) + 1))
plt.xlabel("Game #")
plt.ylabel("Proportion of wins averaged over previous {} games".format(diagnostics.run_length))
add_gating_markers(diagnostics.gating_indices)
plt.savefig("{}/XO.png".format(plots_dir))
plt.clf()
plt.figure()
plt.plot(range(len(diagnostics.rewards)), get_moving_avg(diagnostics.model_outcomes[0], run_length=diagnostics.run_length), label="Best")
plt.plot(range(len(diagnostics.rewards)), get_moving_avg(diagnostics.model_outcomes[1], run_length=diagnostics.run_length), label="HOF")
plt.plot(range(len(diagnostics.rewards)), get_moving_avg(diagnostics.model_outcomes[2], run_length=diagnostics.run_length), label="Tie")
plt.legend()
plt.title("{}: Model v Best wins for {} diagnostic games".format(model_name, len(diagnostics.rewards) + 1))
plt.xlabel("Game #")
plt.ylabel("Proportion of wins averaged over previous {} games".format(diagnostics.run_length))
add_gating_markers(diagnostics.gating_indices)
plt.savefig("{}/HOF.png".format(plots_dir))
plt.clf()
plt.plot(range(len(diagnostics.training_rewards)), np.array(diagnostics.training_avg))
add_gating_markers(diagnostics.train_gating_indices)
plt.title("{}: Reward for {} training games".format(model_name, len(diagnostics.training_rewards)+1))
plt.xlabel("Game #")
plt.ylabel("Cumulative reward over previous {} games".format(diagnostics.training_run_length))
plt.savefig("{}/TrainingReward.png".format(plots_dir))
plt.clf()
step = max(1, hof.pop_size // 40)
matrix = winrate_matrix(mnk, hof_dir, hof.pop_size, step)
plt.imshow(matrix, cmap="bwr")
plt.imsave("plots/{}/Matrix.png".format(model_name), matrix, cmap="bwr")
plt.clf()