-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathFSAT.v
48 lines (35 loc) · 1.11 KB
/
FSAT.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
(* * First-Order Logic *)
From Undecidability.FOL Require Import FullSyntax.
#[global]
Existing Instance falsity_on.
(* ** Syntax as defined in Util/Syntax.v
Inductive term : Type :=
| var : nat -> term
| func : forall (f : syms), vec term (ar_syms f) -> term.
Inductive falsity_flag := falsity_off | falsity_on.
Inductive form : falsity_flag -> Type :=
| falsity : form falsity_on
| atom {b} : forall (P : preds), vec term (ar_preds P) -> form b
| bin {b} : binop -> form b -> form b -> form b
| quant {b} : quantop -> form b -> form b.
*)
(* ** Instantiation to for custom FSAT reduction *)
Inductive syms_func :=
| f : bool -> syms_func
| e : syms_func
| dum : syms_func.
Definition func_arity (f : syms_func) := match f with
| f _ => 1
| e => 0
| dum => 0 end.
#[global]
Instance sig_func : funcs_signature :=
{| syms := syms_func; ar_syms := func_arity |}.
Inductive syms_pred :=
| P : syms_pred
| less : syms_pred
| equiv : syms_pred.
Definition pred_arty (p : syms_pred) := 2.
#[global]
Instance sig_pred : preds_signature :=
{| preds := syms_pred; ar_preds := pred_arty |}.