From f0fe3f5d84904a65553963a8513f40b2e6bb55aa Mon Sep 17 00:00:00 2001 From: Andrej Dudenhefner Date: Mon, 22 Apr 2024 15:37:33 +0200 Subject: [PATCH] added HOMbeta (higher-order matching wrt. beta-equivalence) added reduction from SSTS01 to HOMbeta --- README.md | 1 + theories/LambdaCalculus/HOMatching.v | 41 + theories/LambdaCalculus/HOMatching_undec.v | 22 + .../Reductions/HaltLclosed_to_wCBNclosed.v | 2 +- .../Reductions/SSTS01_to_HOMbeta.v | 2898 +++++++++++++++++ theories/LambdaCalculus/Util/confluence.v | 152 + theories/LambdaCalculus/Util/facts.v | 126 + theories/LambdaCalculus/Util/stlc_facts.v | 342 ++ theories/LambdaCalculus/Util/term_facts.v | 567 +++- theories/_CoqProject | 7 + 10 files changed, 4131 insertions(+), 27 deletions(-) create mode 100644 theories/LambdaCalculus/HOMatching.v create mode 100644 theories/LambdaCalculus/HOMatching_undec.v create mode 100644 theories/LambdaCalculus/Reductions/SSTS01_to_HOMbeta.v create mode 100644 theories/LambdaCalculus/Util/confluence.v create mode 100644 theories/LambdaCalculus/Util/facts.v create mode 100644 theories/LambdaCalculus/Util/stlc_facts.v diff --git a/README.md b/README.md index b47dddd7e..88d60ecc8 100644 --- a/README.md +++ b/README.md @@ -100,6 +100,7 @@ An equivalence proof that most of the mentioned models of computation compute th - Strong normalization for given terms in the strong call-by-name lambda-calculus (`SNclosed` in [`LambdaCalculus/Lambda.v`](theories/LambdaCalculus/Lambda.v)) - System F Inhabitation (`SysF_INH` in [`SystemF/SysF.v`](theories/SystemF/SysF.v)), System F Typability (`SysF_TYP` in [`SystemF/SysF.v`](theories/SystemF/SysF.v)), System F Type Checking (`SysF_TC` in [`SystemF/SysF.v`](theories/SystemF/SysF.v)) - Intersection Type Inhabitation (`CD_INH` in [`IntersectionTypes/CD.v`](theories/IntersectionTypes/CD.v)), Intersection Type Typability (`CD_TYP` in [`IntersectionTypes/CD.v`](theories/IntersectionTypes/CD.v)), Intersection Type Type Checking (`CD_TC` in [`IntersectionTypes/CD.v`](theories/IntersectionTypes/CD.v)) +- Higher-order matching wrt. beta-equivalence (`HOMbeta` in [`LambdaCalculus/HOMatching.v`](theories/LambdaCalculus/HOMatching.v)) #### Decidable Problems diff --git a/theories/LambdaCalculus/HOMatching.v b/theories/LambdaCalculus/HOMatching.v new file mode 100644 index 000000000..24041b131 --- /dev/null +++ b/theories/LambdaCalculus/HOMatching.v @@ -0,0 +1,41 @@ +(* + Author(s): + Andrej Dudenhefner (TU Dortmund University, Germany) + + Problem(s): + Higher-Order Matching wrt. beta-equivalence (HOMbeta) + + Literature: + [1] Loader, Ralph. "Higher order β-matching is undecidable." Logic Journal of the IGPL 11.1 (2003): 51-68. +*) + +Require Import List Relation_Operators. + +Require Undecidability.L.L Undecidability.LambdaCalculus.Lambda. + +(* lambda-term syntax *) +Import L (term, var, app, lam). + +(* beta-reduction (strong call-by-name reduction) *) +Import Lambda (step). + +(* simple types with a single atom *) +Inductive ty : Type := + | atom (* type variable *) + | arr (s t : ty). (* function type *) + +(* + simply typed lambda-calculus with a single atom + "stlc Gamma M s" means that in the type environment Gamma the term M is assigned the type s +*) +Inductive stlc (Gamma : list ty) : term -> ty -> Prop := + | stlc_var x t : nth_error Gamma x = Some t -> stlc Gamma (var x) t + | stlc_app M N s t : stlc Gamma M (arr s t) -> stlc Gamma N s -> stlc Gamma (app M N) t + | stlc_lam M s t : stlc (cons s Gamma) M t -> stlc Gamma (lam M) (arr s t). + +(* Higher-Order Matching wrt. beta-equivalence *) +Definition HOMbeta : { '(s, t, F, N) : (ty * ty * term * term) | stlc nil F (arr s t) /\ stlc nil N t } -> Prop := + (* given simply typed terms F : s -> t and N : t *) + fun '(exist _ (s, t, F, N) _) => + (* is there a simply typed term M : s such that F A is beta-equivalent to B? *) + exists (M : term), stlc nil M s /\ clos_refl_sym_trans term step (app F M) N. diff --git a/theories/LambdaCalculus/HOMatching_undec.v b/theories/LambdaCalculus/HOMatching_undec.v new file mode 100644 index 000000000..a93045a92 --- /dev/null +++ b/theories/LambdaCalculus/HOMatching_undec.v @@ -0,0 +1,22 @@ +(* + Author(s): + Andrej Dudenhefner (TU Dortmund University, Germany) + + Undecidability Result(s): + Higher-Order Matching wrt. beta-equivalence (HOMbeta_undec) +*) + +From Undecidability.Synthetic Require Import Undecidability. + +Require Import Undecidability.LambdaCalculus.HOMatching. +Require Undecidability.LambdaCalculus.Reductions.SSTS01_to_HOMbeta. +Require Import Undecidability.StringRewriting.SSTS_undec. + +(* Undecidability of Higher-Order Matching wrt. beta-equivalence *) +Theorem HOMbeta_undec : undecidable HOMbeta. +Proof. + apply (undecidability_from_reducibility SSTS01_undec). + exact SSTS01_to_HOMbeta.reduction. +Qed. + +Check HOMbeta_undec. diff --git a/theories/LambdaCalculus/Reductions/HaltLclosed_to_wCBNclosed.v b/theories/LambdaCalculus/Reductions/HaltLclosed_to_wCBNclosed.v index 39a93d340..4c02fc8a3 100644 --- a/theories/LambdaCalculus/Reductions/HaltLclosed_to_wCBNclosed.v +++ b/theories/LambdaCalculus/Reductions/HaltLclosed_to_wCBNclosed.v @@ -334,7 +334,7 @@ Qed. Lemma closed_colon {s} : closed s -> forall sigma, subst sigma (colon s (lam (var 0))) = colon s (lam (var 0)). Proof. - move=> Hs sigma. rewrite subst_closed; last done. + move=> Hs sigma. rewrite subst_L_closed; last done. by apply /closed_dcl /bound_colon; apply /closed_dcl. Qed. diff --git a/theories/LambdaCalculus/Reductions/SSTS01_to_HOMbeta.v b/theories/LambdaCalculus/Reductions/SSTS01_to_HOMbeta.v new file mode 100644 index 000000000..074aca5b9 --- /dev/null +++ b/theories/LambdaCalculus/Reductions/SSTS01_to_HOMbeta.v @@ -0,0 +1,2898 @@ +(* + Author(s): + Andrej Dudenhefner (TU Dortmund University, Germany) + + Reduction from: + Simple semi-Thue system 01 rewriting (SSTS01) + to: + Higher-Order Matching wrt. beta-equivalence (HOMbeta) +*) + +Require Import List PeanoNat Relations Lia. +Import ListNotations. + +Require Undecidability.L.L. +Import L (term, var, app, lam). +From Undecidability.LambdaCalculus Require Import Lambda HOMatching Util.facts Util.stlc_facts Util.term_facts. +Require Undecidability.StringRewriting.SSTS. + +Require Import ssreflect. + +Set Default Proof Using "Type". + +(* Set Default Goal Selector "!". *) + +#[local] Unset Implicit Arguments. + +(* used only for debugging +Create HintDb shelf. +Hint Extern 99 => shelve : shelf. *) + +(* solve allfv constraints *) +Create HintDb allfv. +Hint Resolve allfv_apps allfv_app allfv_subst allfv_ren allfv_var Nat.neq_0_succ allfv_ren_lt : allfv. + +(* solve stlc constraints *) +Create HintDb stlc. +Hint Resolve stlc_app Forall2_repeat_r' : stlc. + +(* transforms a goal (A -> B) -> C into goals A and B -> C *) +Lemma unnest : forall (A B C : Type), A -> (B -> C) -> (A -> B) -> C. +Proof. auto. Qed. + +#[local] Notation lams k M := (Nat.iter k lam M). +#[local] Notation apps M Ns := (fold_left app Ns M). +#[local] Notation arrs ss t := (fold_right arr t ss). +#[local] Notation closed M := (forall (P : nat -> Prop), allfv P M). +#[local] Notation steps := (clos_refl_trans _ step). + +#[local] Arguments nth_error_In {A l n x}. + +Section Argument. + +(* symbols is the number of additional symbols besides 0, 1 *) +Context {rules : list ((nat*nat)*(nat*nat))}. + +(* upper bound on rule symbols *) +Definition symbols := 2 + list_sum (map (fun '((a, b), (c, d)) => a+b+c+d) rules). + +(* upper bound on all symbols *) +Notation n := (symbols + 6). (* bot, top, bullet, $, 0, 1 *) + +Definition sym a := 4 + a. + +(* each symbol in rule respects upper bound n *) +Inductive wf_rule (rule : ((nat*nat)*(nat*nat))) : Prop := + | wf_rule_intro : + sym (fst (fst rule)) < n -> sym (fst (snd rule)) < n -> + sym (snd (fst rule)) < n -> sym (snd (snd rule)) < n -> wf_rule rule. + +(* each rule respects the symbol bound *) +Lemma wf_rules : Forall wf_rule rules. +Proof. + suff: (Forall (fun rule => sym (fst (fst rule)) < n /\ sym (fst (snd rule)) < n /\ + sym (snd (fst rule)) < n /\ sym (snd (snd rule)) < n) rules). + { apply: Forall_impl=> *. constructor; lia. } + rewrite /sym /symbols. elim: (rules); first done. + move=> [[a b]] [c d] ? IH /=. constructor. + - move=> /=. lia. + - apply: Forall_impl IH=> - [[a' b']] [c' d'] /=. lia. +Qed. + +Opaque symbols sym. + +(* special symbols *) +Definition bot := 0. +Definition top := 1. +Definition bullet := 2. +Definition dollar := 3. +Definition zero := 4. +Definition one := 5. + +Definition A := fold_right arr atom (repeat atom n). + +(* N .. N M N .. N where M is at position y *) +Definition single (y : nat) (M : term) (N : term) := repeat N (n - 1 - y) ++ M :: (repeat N y). + +Definition delta (i : nat) := lam (lams n (apps (var n) (single top (var i) (var 0)))). +Definition pi (i : nat) := lams n (var i). + +(* case M of bullet |-> N1, zero |-> N2, one |-> N3, else N *) +Definition case_of (M N1 N2 N3 N : term) := apps M (single bullet N1 (apps M (single zero N2 (apps M (single one N3 N))))). + +Lemma nth_error_wf_rule x rule : nth_error rules x = Some rule -> wf_rule rule. +Proof. + move=> /nth_error_In. by move: (wf_rules)=> /Forall_forall /[apply]. +Qed. + +Lemma dollar_lt_n : dollar < n. +Proof. rewrite /dollar. lia. Qed. + +Lemma dollar_lt_Sn : dollar < S n. +Proof. rewrite /dollar. lia. Qed. + +Lemma zero_lt_n : zero < n. +Proof. rewrite /zero. lia. Qed. + +Lemma zero_lt_Sn : zero < S n. +Proof. rewrite /zero. lia. Qed. + +Lemma one_lt_n : one < n. +Proof. rewrite /one. lia. Qed. + +Lemma one_lt_Sn : one < S n. +Proof. rewrite /one. lia. Qed. + +Lemma bullet_lt_n : bullet < n. +Proof. rewrite /bullet. lia. Qed. + +Lemma bot_lt_n : bot < n. +Proof. rewrite /bot. lia. Qed. + +Lemma bot_lt_Sn : bot < S n. +Proof. rewrite /bot. lia. Qed. + +Lemma top_lt_n : top < n. +Proof. rewrite /top. lia. Qed. + +Lemma zero_neq_dollar : zero <> dollar. +Proof. done. Qed. + +Lemma one_neq_dollar : one <> dollar. +Proof. done. Qed. + +Lemma bot_neq_dollar : bot <> dollar. +Proof. done. Qed. + +#[local] Hint Resolve dollar_lt_n dollar_lt_Sn bullet_lt_n top_lt_n bot_lt_n bot_lt_Sn + zero_lt_n zero_lt_Sn one_lt_n one_lt_Sn zero_neq_dollar one_neq_dollar bot_neq_dollar : core. + +Lemma map_single (f : term -> term) M N x : map f (single x M N) = single x (f M) (f N). +Proof. by rewrite /single !map_app /= !map_repeat. Qed. + +Lemma length_single M N i : i < n -> length (single i M N) = n. +Proof. rewrite /single app_length /= !repeat_length. lia. Qed. + +Lemma nth_single_eq i N1 N2 M : nth i (rev (single i N1 N2)) M = N1. +Proof. + rewrite /single rev_app_distr /= -app_assoc. + by rewrite app_nth2 !rev_length !repeat_length ?Nat.sub_diag. +Qed. + +Lemma nth_single_neq i j N1 N2 M : i < n -> j < n -> i <> j -> nth j (rev (single i N1 N2)) M = N2. +Proof. + move=> ???. rewrite /single rev_app_distr /= -app_assoc. + have [?|?] : j < i \/ j > i by lia. + - rewrite app_nth1; first by rewrite rev_length repeat_length. + rewrite rev_repeat (nth_indep _ _ N2); first by rewrite repeat_length. + by apply: nth_repeat. + - rewrite app_nth2 !rev_length !repeat_length; first lia. + have ->: j - i = S (j - i - 1) by lia. + rewrite /= rev_repeat (nth_indep _ _ N2); first by (rewrite repeat_length; lia). + by apply: nth_repeat. +Qed. + +Lemma Forall_single P M N i : P M -> P N -> Forall P (single i M N). +Proof. + move=> ??. rewrite /single. apply /Forall_app. split. + - by apply /Forall_forall=> ? /(@repeat_spec term) ->. + - by constructor; [|apply /Forall_forall=> ? /(@repeat_spec term) ->]. +Qed. + +Lemma Forall2_single P i N1 N2 N'2 N'1 : P N1 N'1 -> P N2 N'2 -> Forall2 P (single i N1 N2) (single i N'1 N'2). +Proof. + move=> ??. rewrite /single. apply: Forall2_app. + - by apply: Forall2_repeat. + - constructor; first done. + by apply: Forall2_repeat. +Qed. + +Lemma stlc_var_atom i Gamma : i < n -> stlc (repeat atom n ++ Gamma) (var i) atom. +Proof. + move=> ?. apply: stlc_var. rewrite nth_error_app1; first by rewrite repeat_length. + by rewrite nth_error_repeat. +Qed. + +Lemma stlc_pi Gamma i : i < n -> stlc Gamma (pi i) A. +Proof. + rewrite /pi /A=> ?. apply: stlc_lams. + - by apply: repeat_length. + - rewrite rev_repeat. by apply: stlc_var_atom. +Qed. + +Lemma pi_closed i : i < n -> closed (pi i). +Proof. move=> /(stlc_pi []). by apply: stlc_closed. Qed. + +Hint Resolve allfv_closed pi_closed : allfv. + +Lemma ren_pi xi i : i < n -> ren xi (pi i) = pi i. +Proof. move=> ?. by rewrite ren_closed; auto with allfv. Qed. + +Lemma subst_pi i sigma : i < n -> subst sigma (pi i) = pi i. +Proof. move=> ?. by rewrite subst_closed; auto with allfv. Qed. + +Lemma stlc_apps_single Gamma M i N1 N2 : i < n -> + stlc Gamma M A -> stlc Gamma N1 atom -> stlc Gamma N2 atom -> stlc Gamma (apps M (single i N1 N2)) atom. +Proof. + move=> ????. apply: stlc_apps; first by eassumption. + apply: Forall2_repeat_r'; last by apply: length_single. + by apply: Forall_single. +Qed. + +Lemma stlc_repeat_var_lt Gamma i : i < n -> stlc (repeat atom n ++ Gamma) (var i) atom. +Proof. + move=> ?. constructor. + rewrite nth_error_app1; first by rewrite repeat_length. + by apply nth_error_repeat. +Qed. + +Lemma stlc_repeat_var_eq Gamma x t : stlc (repeat atom x ++ t :: Gamma) (var x) t. +Proof. + apply: stlc_var. by rewrite nth_error_app2 repeat_length ?Nat.sub_diag. +Qed. + +Lemma stlc_delta Gamma i : i < n -> stlc Gamma (delta i) (arr A A). +Proof. + rewrite /delta=> ?. constructor. + apply: stlc_lams; first by apply: repeat_length. + rewrite rev_repeat. apply: stlc_apps_single; first done. + - constructor. by rewrite nth_error_app2 repeat_length ?Nat.sub_diag. + - by apply: stlc_repeat_var_lt. + - by apply: stlc_repeat_var_lt. +Qed. + +Lemma delta_closed i : i < n -> closed (delta i). +Proof. move=> /(stlc_delta []). by apply: stlc_closed. Qed. + +Hint Resolve delta_closed : allfv. + +Lemma ren_delta xi i : i < n -> ren xi (delta i) = delta i. +Proof. move=> ?. by rewrite ren_closed; auto with allfv. Qed. + +Lemma subst_delta i sigma : i < n -> subst sigma (delta i) = delta i. +Proof. move=> ?. by rewrite subst_closed; auto with allfv. Qed. + +Lemma fold_left_lt Ms x : x < length Ms -> fold_left (fun sigma N => scons N sigma) Ms var x = nth x (rev Ms) (var 0). +Proof. + elim /rev_ind: Ms x. + - move=> /=. lia. + - move=> M Ms IH. rewrite fold_left_app rev_app_distr /=. + move=> [|?] /=; first done. + rewrite app_length=> /= ?. apply: IH. lia. +Qed. + +Lemma fold_left_single_ge N1 N2 i x : i < n -> x >= n -> fold_left (fun sigma N => scons N sigma) (single i N1 N2) var x = var (x - n). +Proof. + move=> Hi Hx. + have := length_single N1 N2 i Hi. + rewrite -rev_length -fold_left_rev_right. + elim: (rev (single i N1 N2)) (n) x Hx. + - move=> > ? /= <-. by rewrite Nat.sub_0_r. + - move=> ?? IH [|?]; first done. + move=> [|x] /=; first by lia. + by move=> ? [/IH] ->; first by lia. +Qed. + +Lemma fold_left_single_eq N1 N2 i : i < n -> fold_left (fun sigma N => scons N sigma) (single i N1 N2) var i = N1. +Proof. + move=> ?. rewrite fold_left_lt. + - by rewrite length_single. + - by apply: nth_single_eq. +Qed. + +Lemma fold_left_single_neq N1 N2 i x : i < n -> x < n -> x <> i -> fold_left (fun sigma N => scons N sigma) (single i N1 N2) var x = N2. +Proof. + move=> ???. rewrite fold_left_lt. + - by rewrite length_single. + - apply: nth_single_neq; lia. +Qed. + +Lemma steps_apps_lams_n_single M N1 N2 i : + i < n -> steps (apps (lams n M) (single i N1 N2)) (subst (fold_left (fun sigma N => scons N sigma) (single i N1 N2) var) M). +Proof. move=> ?. apply: stepsReds'. by apply: length_single. Qed. + +Lemma steps_pi_eq i N1 N2 : i < n -> steps (apps (pi i) (single i N1 N2)) N1. +Proof. + move=> ?. rewrite /pi. apply: rt_trans; first by apply: steps_apps_lams_n_single. + apply: steps_refl. by rewrite /= fold_left_single_eq. +Qed. + +Lemma steps_pi_neq i j N1 N2 : i < n -> j < n -> i <> j -> steps (apps (pi i) (single j N1 N2)) N2. +Proof. + move=> ???. rewrite /pi. apply: rt_trans; first by apply: steps_apps_lams_n_single. + apply: steps_refl. by rewrite /= fold_left_single_neq. +Qed. + +Lemma step_delta i M : i < n -> steps (app (delta i) M) (lams n (apps (ren (Nat.add n) M) (single top (var i) (var bot)))). +Proof. + move=> ?. apply: rt_trans; first by apply: stepsRed. + rewrite subst_lams subst_apps /= iter_up_ge; first done. + rewrite Nat.sub_diag map_single /=. + rewrite iter_up_lt; first done. + rewrite iter_up_lt; first done. + by apply: steps_refl. +Qed. + +Lemma steps_delta_eq i M N1 N2 : S i < n -> + steps (apps (app (delta (S i)) M) (single (S i) N1 N2)) (apps M (single top N1 N2)). +Proof. + move=> ?. apply: rt_trans. + { apply: stepsAppsL. by apply: step_delta. } + apply: rt_trans; first by apply: steps_apps_lams_n_single. + apply: steps_refl. rewrite subst_apps !map_single /=. congr (apps _ _). + - rewrite fold_left_single_eq; first done. + by rewrite fold_left_single_neq. + - rewrite subst_ren_term /= -[RHS]subst_var_term. apply: ext_subst_term. + move=> ?. rewrite fold_left_single_ge; [..|congr var]; lia. +Qed. + +Lemma steps_delta_pi_top i : i < n -> steps (app (delta i) (pi top)) (pi i). +Proof. + move=> ?. apply: rt_trans; first by apply: step_delta. + apply: stepsLams. rewrite ren_pi; first done. by apply: steps_pi_eq. +Qed. + +Hint Resolve Forall_single pi_closed delta_closed : allfv. +Hint Resolve stlc_delta stlc_var_atom stlc_apps_single stlc_pi Forall_single length_single stlc_repeat_var_lt stlc_repeat_var_eq stlc_var stlc_lam : stlc. +Hint Extern 1 (stlc _ (app _ _) _) => simple eapply stlc_app : stlc. + +Lemma normal_form_pi i : normal_form (pi i). +Proof. rewrite /pi. elim: (n)=> *; by do ? constructor. Qed. + +Lemma steps_pi_elim {P : Prop} {M M' : term} {i : nat} : steps M M' -> (steps M' (pi i) -> P) -> steps M (pi i) -> P. +Proof. apply: steps_nf_elim. by apply: normal_form_pi. Qed. + +Inductive nf : term -> Prop := + | nf_lam M : normal_form M -> nf (lam M) + | nf_neutral M : neutral normal_form M -> nf M. + +Lemma normal_form_nf M : normal_form M -> nf M. +Proof. + move=> /normal_form_neutral []. + - by apply: nf_neutral. + - move=> [?] [->]. by apply: nf_lam. +Qed. + +Lemma stlc_normal_form_pi M : normal_form M -> stlc [] M A -> exists i, i < n /\ M = pi i. +Proof. + move=> HM. + suff: forall k, stlc (repeat atom k) M A -> exists i, i < k + n /\ M = pi i by move=> /(_ 0); apply. + rewrite /A /pi. elim /(Nat.measure_induction _ term_size): M HM (n). + move=> M + /normal_form_nf HM. case: HM. + - move=> {}M + IH [|n] k /stlcE []; first done. + move=> /IH {}IH ?? [<- <-] /(IH _ n (S k)) [] /=; first done. + move=> i [? ->]. exists i. by split; [lia|]. + - move=> {}M /neutralE' [x] [Ms] [-> _] IH n k /stlc_appsE [ss] [HMs] /stlcE. + move=> /[dup] /nth_error_Some'. rewrite arrs_arrs repeat_length. + move=> /[dup] ? /(@nth_error_repeat ty) -> [] /(arrs_inj []). + move: ss Ms n HMs IH=> [|??] [|??] [|?] /Forall2_length; [|done..]. + move=> *. rewrite Nat.add_0_r. by exists x. +Qed. + +Lemma stlc_pi_intro i M : stlc [] M A -> (forall j, j < n -> j <> i -> steps M (pi j) -> False) -> steps M (pi i). +Proof. + move=> /[dup] /stlc_wn [N] /[dup] H2N /stlc_steps + H1N => /[apply]. + move: H1N => /stlc_normal_form_pi /[apply] - [j] [??] H. subst N. + have [?|?] : j = i \/ j <> i by lia. + - by subst j. + - exfalso. by apply: H; eassumption. +Qed. + +Lemma subst_case_of sigma M N1 N2 N3 N : subst sigma (case_of M N1 N2 N3 N) = + case_of (subst sigma M) (subst sigma N1) (subst sigma N2) (subst sigma N3) (subst sigma N). +Proof. rewrite /case_of. by do 3 rewrite !subst_apps !map_single. Qed. + +Lemma steps_case_of_head M M' N1 N2 N3 N : steps M M' -> steps (case_of M N1 N2 N3 N) (case_of M' N1 N2 N3 N). +Proof. + move=> ?. rewrite /case_of. + apply: rt_trans. + { apply: stepsAppsL. by eassumption. } + apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: rt_trans. + { apply: stepsAppsL. by eassumption. } + apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: rt_trans. + { apply: stepsAppsL. by eassumption. } + by apply: rt_refl. +Qed. + +Lemma steps_case_of_bullet N1 N2 N3 N : steps (case_of (pi bullet) N1 N2 N3 N) N1. +Proof. by apply: steps_pi_eq. Qed. + +Lemma steps_case_of_L N1 N2 N3 N : steps (case_of (pi zero) N1 N2 N3 N) N2. +Proof. by apply: rt_trans; [apply: steps_pi_neq|apply: steps_pi_eq]. Qed. + +Lemma steps_case_of_R N1 N2 N3 N : steps (case_of (pi one) N1 N2 N3 N) N3. +Proof. by apply: rt_trans; [apply: steps_pi_neq|apply: rt_trans; [apply: steps_pi_neq|apply: steps_pi_eq]]. Qed. + +Lemma steps_case_of_fst M N1 N2 N3 N N1' : steps N1 N1' -> steps (case_of M N1 N2 N3 N) (case_of M N1' N2 N3 N). +Proof. + move=> H. rewrite /case_of. apply: stepsAppsR. apply: Forall2_single; first done. + by apply: rt_refl. +Qed. + +Lemma steps_case_of_snd M N1 N2 N3 N N2' : steps N2 N2' -> steps (case_of M N1 N2 N3 N) (case_of M N1 N2' N3 N). +Proof. + move=> H. rewrite /case_of. + apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: stepsAppsR. apply: Forall2_single; first by done. + by apply: rt_refl. +Qed. + +Lemma steps_case_of_trd M N1 N2 N3 N N3' : steps N3 N3' -> steps (case_of M N1 N2 N3 N) (case_of M N1 N2 N3' N). +Proof. + move=> H. rewrite /case_of. + apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: stepsAppsR. apply: Forall2_single; first by done. + by apply: rt_refl. +Qed. + +Lemma allfv_case_of P M N1 N2 N3 N : allfv P M -> allfv P N1 -> allfv P N2 -> allfv P N3 -> allfv P N -> allfv P (case_of M N1 N2 N3 N). +Proof. move=> *. rewrite /case_of. auto 8 with allfv. Qed. + +Lemma stlc_case_of Gamma M N1 N2 N3 N : stlc Gamma M A -> stlc Gamma N1 atom -> stlc Gamma N2 atom -> stlc Gamma N3 atom -> stlc Gamma N atom -> + stlc Gamma (case_of M N1 N2 N3 N) atom. +Proof. + move=> *. rewrite /case_of. apply: stlc_apps_single; [done..|]. + apply: stlc_apps_single; [done..|]. + by apply: stlc_apps_single. +Qed. + +Lemma steps_pi_full i : i < n -> steps (apps (pi i) (map var (rev (seq 0 n)))) (var i). +Proof. + move=> ?. apply: rt_trans. + { apply: stepsReds'. by rewrite map_length rev_length seq_length. } + apply: steps_refl. rewrite /= fold_left_lt. + - by rewrite map_length rev_length seq_length. + - by rewrite map_rev rev_involutive map_nth seq_nth. +Qed. + +Opaque A pi single delta case_of. + +(* Gamma_A facts *) + +Definition A_star := arrs [arr A A; arr (arr A A) A] A. +Definition A_0R := arrs [arr A A; A] A. (* A_0 and A_R *) +Definition A_1 := A. + +Definition Gamma_A m := repeat (arr A A) m ++ [A_star; A] ++ repeat A_0R (1 + length rules). + +Lemma length_Gamma_A m : length (Gamma_A m) = m + 3 + length rules. +Proof. rewrite /Gamma_A !app_length !repeat_length /=. lia. Qed. + +Lemma Gamma_A_pos m x : x < m -> nth_error (Gamma_A m) x = Some (arr A A). +Proof. + move=> ?. rewrite /Gamma_A nth_error_app1 ?repeat_length; first done. + by apply: nth_error_repeat. +Qed. + +Lemma Gamma_A_space m : nth_error (Gamma_A m) m = Some A_star. +Proof. + rewrite /Gamma_A nth_error_app2 ?repeat_length; first lia. + by have ->: m - m = 0 by lia. +Qed. + +Lemma Gamma_A_fin m : nth_error (Gamma_A m) (S m) = Some A. +Proof. + rewrite /Gamma_A nth_error_app2 ?repeat_length; first lia. + by have ->: S m - m = 1 by lia. +Qed. + +Lemma Gamma_A_init m : nth_error (Gamma_A m) (S (S m)) = Some A_0R. +Proof. + rewrite /Gamma_A nth_error_app2 ?repeat_length; first lia. + by have ->: S (S m) - m = 2 by lia. +Qed. + +Lemma Gamma_A_rule m x : x < m + 3 + length rules -> x > S m -> nth_error (Gamma_A m) x = Some A_0R. +Proof. + move=> ??. rewrite /Gamma_A nth_error_app2 ?repeat_length; first lia. + have ->: x - m = 2 + (x - m - 2) by lia. + apply: nth_error_repeat. lia. +Qed. + +Inductive Gamma_A_vals (m : nat) (x : nat) : Prop := + | Gamma_A_vals_pos : x < m -> nth_error (Gamma_A m) x = Some (arr A A) -> Gamma_A_vals m x + | Gamma_A_vals_space : x = m -> nth_error (Gamma_A m) x = Some A_star -> Gamma_A_vals m x + | Gamma_A_vals_fin : x = S m -> nth_error (Gamma_A m) x = Some A -> Gamma_A_vals m x + | Gamma_A_vals_init : x = S (S m) -> nth_error (Gamma_A m) x = Some A_0R -> Gamma_A_vals m x + | Gamma_A_vals_rule : x > S (S m) -> nth_error (Gamma_A m) x = Some A_0R -> Gamma_A_vals m x. + +Lemma Gamma_A_vals_spec m x : x < length (Gamma_A m) -> Gamma_A_vals m x. +Proof. + rewrite length_Gamma_A=> ?. + have [?|[<-|[->|[->|?]]]] : x < m \/ x = m \/ x = S m \/ x = S (S m) \/ x > S (S m) by lia. + - by apply: Gamma_A_vals_pos; [|apply: Gamma_A_pos]. + - by apply: Gamma_A_vals_space; [|apply: Gamma_A_space]. + - by apply: Gamma_A_vals_fin; [|apply: Gamma_A_fin]. + - by apply: Gamma_A_vals_init; [|apply: Gamma_A_init]. + - apply: Gamma_A_vals_rule; [|apply: Gamma_A_rule]; lia. +Qed. + +(* sigma_F facts *) + +Definition F_star : term := lam (lam (app (var 0) (lam (var 0)))). +Definition F_0 : term := lam (lam (var 0)). +Definition F_R : term := lam (var 0). + +Definition sigma_F m := (fun x => nth x ((repeat (lam (var 0)) m) ++ [F_star; var m; F_0] ++ repeat F_R (length rules)) (var x)). + +Lemma sigma_F_pos m i : i < m -> sigma_F m i = lam (var 0). +Proof. + move=> ?. rewrite /sigma_F app_nth1 ?repeat_length; first done. + rewrite (nth_indep _ _ (lam (var 0))) ?repeat_length; first done. + by apply: nth_repeat. +Qed. + +Lemma sigma_F_space m : sigma_F m m = F_star. +Proof. + rewrite /sigma_F app_nth2 ?repeat_length; first lia. + by have ->: m - m = 0 by lia. +Qed. + +Lemma sigma_F_fin m : sigma_F m (S m) = var m. +Proof. + rewrite /sigma_F app_nth2 ?repeat_length; first lia. + by have ->: S m - m = 1 by lia. +Qed. + +Lemma sigma_F_init m : sigma_F m (S (S m)) = F_0. +Proof. + rewrite /sigma_F app_nth2 ?repeat_length; first lia. + by have ->: S (S m) - m = 2 by lia. +Qed. + +Lemma sigma_F_rule m x : x < length (Gamma_A m) -> x > S (S m) -> sigma_F m x = F_R. +Proof. + rewrite length_Gamma_A=> ??. rewrite /sigma_F app_nth2 ?repeat_length; first lia. + rewrite (nth_indep _ _ F_R). + { rewrite /= repeat_length. lia. } + have ->: x - m = 3 + (x - m - 3) by lia. + by apply: nth_repeat. +Qed. + +Lemma stlc_F_0 Gamma : stlc Gamma F_0 A_0R. +Proof. rewrite /F_0 /A_0R. by do ? econstructor. Qed. + +Lemma stlc_F_R Gamma : stlc Gamma F_R A_0R. +Proof. rewrite /F_R /A_0R. by do ? econstructor. Qed. + +Lemma stlc_F_star Gamma : stlc Gamma F_star A_star. +Proof. rewrite /F_star /A_star. by do ? econstructor. Qed. + +Hint Resolve stlc_F_0 stlc_F_star stlc_F_R Forall2_cons Forall2_nil : stlc. + +Lemma ren_S_sigma_F m x : x < length (Gamma_A m) -> ren S (sigma_F m x) = sigma_F (S m) (S x). +Proof. + rewrite /sigma_F /= -(map_nth (ren S))=> H. + rewrite map_app /= !map_repeat /=. + apply: nth_indep. + move: H. by rewrite /Gamma_A !app_length /= !repeat_length. +Qed. + +Lemma steps_F_0 {N1 N2} : steps (apps F_0 [N1; N2]) N2. +Proof. + apply: rt_trans. + - apply: stepsAppL. by apply: stepsRed. + - by apply: stepsRed. +Qed. + +Lemma steps_F_R {N1 N2} : steps (apps F_R [N1; N2]) (app N1 N2). +Proof. + apply: stepsAppL. by apply: stepsRed. +Qed. + +Lemma steps_F_star N M : steps (apps F_star [N; M]) (app M (lam (var 0))). +Proof. + apply: rt_trans. + - rewrite /=. apply: stepsAppL. by apply: stepsRed. + - by apply: stepsRed. +Qed. + +Opaque F_star F_0 F_R. + +(* sigma_H facts *) + +Definition H_star : term := lams (2 + n) (apps (var n) (delta bullet :: single dollar (var dollar) (var 0))). +Definition H_0 : term := lams 2 (lams n (apps (var n) (single one (var dollar) (var bot)))). +Definition H_R : term := lams 2 (lams n (apps (var (S n)) (pi top :: single bullet (apps (var n) (single one (var one) (var bot))) (var bot)))). +Definition H_1 : term := pi one. + +Definition sigma_H m := (fun x => nth x ((repeat (delta bullet) m) ++ [H_star; H_1; H_0] ++ repeat H_R (length rules)) (var x)). + +Lemma sigma_H_pos m x : x < m -> sigma_H m x = delta bullet. +Proof. + move=> ?. rewrite /sigma_H app_nth1 ?repeat_length; first done. + rewrite (nth_indep _ _ (delta bullet)) ?repeat_length; first done. + by apply: nth_repeat. +Qed. + +Lemma sigma_H_space m : sigma_H m m = H_star. +Proof. + rewrite /sigma_H app_nth2 ?repeat_length; first lia. + by have ->: m - m = 0 by lia. +Qed. + +Lemma sigma_H_fin m : sigma_H m (S m) = H_1. +Proof. + rewrite /sigma_H app_nth2 ?repeat_length; first lia. + by have ->: S m - m = 1 by lia. +Qed. + +Lemma sigma_H_init m : sigma_H m (S (S m)) = H_0. +Proof. + rewrite /sigma_H app_nth2 ?repeat_length; first lia. + by have ->: S (S m) - m = 2 by lia. +Qed. + +Lemma sigma_H_rule m x : x < length (Gamma_A m) -> x > S (S m) -> sigma_H m x = H_R. +Proof. + rewrite length_Gamma_A=> ??. + rewrite /sigma_H app_nth2 ?repeat_length; first lia. + rewrite (nth_indep _ _ H_R). + { rewrite /= repeat_length. lia. } + have ->: x - m = 3 + (x - m - 3) by lia. + by apply: nth_repeat. +Qed. + +Lemma stlc_H_1 Gamma : stlc Gamma H_1 A. +Proof. + by apply: stlc_pi. +Qed. + +Lemma stlc_H_star Gamma : stlc Gamma H_star A_star. +Proof. + rewrite /H_star /=. do 2 constructor. + apply: stlc_lams; first by rewrite repeat_length. + rewrite rev_repeat. by auto with stlc. +Qed. + +Lemma stlc_H_0 Gamma : stlc Gamma H_0 A_0R. +Proof. + rewrite /H_0 /=. do 2 constructor. apply: stlc_lams; first by rewrite repeat_length. + rewrite rev_repeat. by auto with stlc. +Qed. + +Lemma stlc_H_R Gamma : stlc Gamma H_R A_0R. +Proof. + rewrite /H_R /=. do 2 constructor. apply: stlc_lams; first by rewrite repeat_length. + rewrite rev_repeat. + have ? : forall t, stlc (repeat atom n ++ A :: t :: Gamma) (var (S n)) t. + { constructor. rewrite nth_error_app2 repeat_length; first lia. + by have ->: S n - n = 1 by lia. } + by auto with stlc. +Qed. + +Lemma stlc_sigma_H m x s : nth_error (Gamma_A m) x = Some s -> stlc [] (sigma_H m x) s. +Proof. + move=> /[dup] /nth_error_Some' /Gamma_A_vals_spec []. + - move=> /sigma_H_pos -> -> [<-]. by apply: stlc_delta. + - move=> -> -> [<-]. rewrite sigma_H_space. by apply: stlc_H_star. + - move=> -> -> [<-]. rewrite sigma_H_fin. by apply: stlc_H_1. + - move=> -> -> [<-]. rewrite sigma_H_init. by apply: stlc_H_0. + - move=> ? /[dup] /nth_error_Some' ? -> [<-]. + rewrite sigma_H_rule; [done..|]. + by apply: stlc_H_R. +Qed. + +Lemma stlc_subst_sigma_H m M t : + stlc (Gamma_A m) M t -> stlc [] (subst (sigma_H m) M) t. +Proof. + move=> /stlc_subst. apply. by apply: stlc_sigma_H. +Qed. + +Lemma H_1_closed : closed H_1. +Proof. apply: stlc_closed. by apply: stlc_H_1. Qed. + +Lemma H_star_closed : closed H_star. +Proof. apply: stlc_closed. by apply: stlc_H_star. Qed. + +Lemma H_0_closed : closed H_0. +Proof. apply: stlc_closed. by apply: stlc_H_0. Qed. + +Lemma H_R_closed : closed H_R. +Proof. apply: stlc_closed. by apply: stlc_H_R. Qed. + +Lemma sigma_H_closed m x : x < length (Gamma_A m) -> closed (sigma_H m x). +Proof. + move=> /nth_error_Some. + case E: (nth_error (Gamma_A m) x); last done. + move: E => /stlc_sigma_H /stlc_allfv_not_None + _ ?. + apply: allfv_impl. by case. +Qed. + +Lemma subst_sigma_H_closed m M t : stlc (Gamma_A m) M t -> closed (subst (sigma_H m) M). +Proof. + move=> /stlc_subst_sigma_H /stlc_allfv_not_None + P. + apply: allfv_impl. by case. +Qed. + +Hint Resolve stlc_H_0 stlc_H_1 stlc_H_star stlc_H_R : stlc. +Hint Resolve H_R_closed H_0_closed H_star_closed H_1_closed sigma_H_closed subst_sigma_H_closed : allfv. + +Lemma steps_H_0 {N1 N2} : + steps (app (app H_0 N1) N2) + (lams n (apps (ren (Nat.add n) N2) (single one (var dollar) (var bot)))). +Proof. + apply: rt_trans. + { rewrite /H_0 /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + apply: steps_refl. + rewrite subst_subst_term!subst_lams !subst_apps !map_single /=. + by rewrite iter_up_eq !iter_up_lt. +Qed. + +Lemma steps_H_R {N1 N2} : + steps (app (app H_R N1) N2) + (lams n (apps (ren (Nat.add n) N1) (pi top :: single bullet (apps (ren (Nat.add n) N2) (single one (var one) (var bot))) (var bot)))). +Proof. + apply: rt_trans. + { rewrite /H_R /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + rewrite !subst_lams !subst_apps !map_single /= !subst_apps !map_single /=. + rewrite !subst_pi; [done..|]. + rewrite iter_up_eq !(iter_up_ge n (S n)); first lia. + have -> : S n - n = 1 by lia. + rewrite /= Nat.add_0_r iter_up_eq /=. + apply: stepsLams. apply: steps_refl. congr (apps _ _). + - rewrite !iter_up_lt; [done..|]. + by rewrite /= !iter_up_lt. + - congr app. rewrite ren_ren_term subst_ren_term /= [RHS]ren_as_subst_term. + apply: ext_subst_term=> x. + rewrite iter_up_ge; first lia. + by have ->: n + S x - n = S x by lia. +Qed. + +Lemma steps_H_star M1 M2 : steps (apps H_star [M1; M2]) (lams n (apps (ren (Nat.add n) M2) (delta bullet :: single dollar (var dollar) (var 0)))). +Proof. + apply: rt_trans. + { rewrite /H_star /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + rewrite !subst_lams !subst_apps !map_single /= !subst_delta; [done..|]. + rewrite iter_up_eq !iter_up_lt; [done..|]. + apply: stepsLams. apply: steps_refl. congr (apps _ _). + - by rewrite /= !iter_up_lt. + - congr app. by rewrite /= Nat.add_0_r iter_up_eq. +Qed. + +Lemma ren_S_sigma_H m x : x < length (Gamma_A m) -> ren S (sigma_H m x) = sigma_H (S m) (S x). +Proof. + move=> Hx. + rewrite ren_closed; first by auto with allfv. + rewrite /sigma_H /=. apply: nth_indep. + move: Hx. by rewrite /Gamma_A /= !app_length /= !repeat_length. +Qed. + +Lemma steps_subst_sigma_H_pi_intro m M x N1 N2 i : + stlc (Gamma_A m) M A -> + allfv (fun y => y <> x) N2 -> + S i < n -> + steps (apps (subst (sigma_H m) M) (single (S i) N1 N2)) (var x) -> + steps (subst (sigma_H m) M) (pi (S i)). +Proof. + move=> HM HN2 ? H. apply: stlc_pi_intro; first by apply: stlc_subst_sigma_H. + move=> ??? H'M. + apply: steps_var_elim H. { apply: stepsAppsL. by eassumption. } + apply: steps_var_elim; first by apply: steps_pi_neq. + by apply: steps_var_absurd. +Qed. + +Opaque H_star H_0 H_R H_1. + +(* sigma_G facts *) + +Definition G_pos (m k : nat) := + match k with + | 0 => repeat (delta bullet) m + | S k => map (fun x => if Nat.eqb k x then delta zero else if Nat.eqb k (S x) then delta one else delta bullet) (seq 0 m) + end. + +Definition G_star := lams (2 + n) (case_of (app (var (S n)) (pi top)) + (* if h (pi top) is bullet then *) + (apps (app (var n) (delta bullet)) (single zero + (* if M (delta bullet) is zero then zero *) + (var zero) + (* else *) + (apps (app (var n) (delta bullet)) (single dollar + (* if M (delta bullet) is dollar and M (delta zero) is one then dollar *) + (apps (app (var n) (delta zero)) (single one (var dollar) (var bot))) (var bot))))) + (* if h (pi top) is zero and M (delta one) is zero then one *) + (apps (app (var n) (delta one)) (single zero (var one) (var bot))) + (* if h (pi top) is one and M (delta bullet) is zero then zero *) + (apps (app (var n) (delta bullet)) (single zero (var zero) (var bot))) + (* else bot *) + (var bot)). + +Definition G_1 := pi one. + +Definition G_0 := + lams (2 + n) (case_of (app (var (S n)) (pi top)) + (* bullet |-> if x is zero then * else if is one then $ *) + (apps (var n) (single zero (var zero) (apps (var n) (single one (var dollar) (var bot))))) + (* zero |-> if x is zero then one *) + (apps (var n) (single zero (var one) (var bot))) + (* one |-> if x is d then b *) + (apps (var n) (single zero (var zero) (var bot))) + (* else fail *) + (var bot)). + +Definition G_R (rule : (nat*nat)*(nat*nat)) := + lams (2 + n) (case_of (app (var (S n)) (pi top)) + (* bullet |-> no change *) + (apps (var n) (map var (rev (seq 0 n)))) + (* zero |-> if x is c then a *) + (apps (var n) (single (sym (fst (snd rule))) (var (sym (fst (fst rule)))) (var 0))) + (* one |-> if x is d then b *) + (apps (var n) (single (sym (snd (snd rule))) (var (sym (snd (fst rule)))) (var 0))) + (* else fail *) + (var bot)). + +Definition sigma_G m k := (fun x => nth x (G_pos m k ++ [G_star; G_1; G_0] ++ map G_R rules) (var x)). + +Lemma length_G_pos m k : length (G_pos m k) = m. +Proof. + case: k=> [|k] /=. + - by rewrite repeat_length. + - by rewrite map_length seq_length. +Qed. + +Lemma nth_G_pos_neq m k x : x < m -> S x <> k -> S (S x) <> k -> nth x (G_pos m k) (var x) = delta bullet. +Proof. + move: k => [|k] ???; rewrite /G_pos. + - rewrite (nth_indep _ _ (delta bullet)). + + by rewrite repeat_length. + + by rewrite nth_repeat. + - set f := (fun _ => _). + rewrite (nth_indep _ _ (f 0)); first by rewrite map_length seq_length. + rewrite map_nth seq_nth; first done. + rewrite /f /=. + case E1: (Nat.eqb k x). + { move=> /Nat.eqb_eq in E1. lia. } + case E2: (Nat.eqb k (S x)). + { move=> /Nat.eqb_eq in E2. lia. } + done. +Qed. + +Lemma sigma_G_pos_0 m x : x < m -> sigma_G m 0 x = delta bullet. +Proof. + move=> ?. rewrite /sigma_G app_nth1; first by rewrite length_G_pos. + rewrite /G_pos (nth_indep _ _ (delta bullet)). + - by rewrite repeat_length. + - by rewrite nth_repeat. +Qed. + +Lemma sigma_G_pos_S m k x : x < m -> sigma_G m (S k) x = if Nat.eqb k x then delta zero else if Nat.eqb k (S x) then delta one else delta bullet. +Proof. + move=> ?. rewrite /sigma_G app_nth1; first by rewrite length_G_pos. + case E1: (Nat.eqb k x). + { move=> /Nat.eqb_eq in E1. rewrite E1. + rewrite /G_pos. set f := fun _ => _. + rewrite (nth_indep _ _ (f 0)); first by rewrite map_length seq_length. + rewrite map_nth seq_nth /=; first done. + by rewrite /f Nat.eqb_refl. } + move=> /Nat.eqb_neq in E1. + case E2: (Nat.eqb k (S x)). + { move=> /Nat.eqb_eq in E2. rewrite E2. + rewrite /G_pos. set f := fun _ => _. + rewrite (nth_indep _ _ (f 0)); first by rewrite map_length seq_length. + rewrite map_nth seq_nth /=; first done. + rewrite /f Nat.eqb_refl. + by have /Nat.eqb_neq ->: S x <> x by lia. } + move=> /Nat.eqb_neq in E2. + by rewrite nth_G_pos_neq; [lia..|]. +Qed. + +Lemma sigma_G_fin m k : sigma_G m k (S m) = G_1. +Proof. + rewrite /sigma_G app_nth2 length_G_pos; first lia. + by have ->: S m - m = 1 by lia. +Qed. + +Lemma sigma_G_star m k : sigma_G m k m = G_star. +Proof. + rewrite /sigma_G app_nth2 length_G_pos; first done. + by rewrite Nat.sub_diag. +Qed. + +Lemma sigma_G_init m k : sigma_G m k (S (S m)) = G_0. +Proof. + rewrite /sigma_G app_nth2 length_G_pos; first by lia. + by have ->: S (S m) - m = 2 by lia. +Qed. + +Lemma sigma_G_rule m k x rule : nth_error rules x = Some rule -> sigma_G m k (x + 3 + m) = G_R rule. +Proof. + rewrite /sigma_G app_nth2 length_G_pos; first lia. + have ->: x + 3 + m - m = 3 + x by lia. + rewrite /=. elim: (rules) x; first by case. + move=> ?? IH [|x] /=. + - by move=> [->]. + - move=> /[dup] Hx /IH <-. apply: nth_indep. + rewrite map_length. apply /nth_error_Some. by rewrite Hx. +Qed. + +Lemma stlc_G_1 Gamma : stlc Gamma G_1 A. +Proof. + by apply: stlc_pi. +Qed. + +Lemma stlc_G_star Gamma : stlc Gamma G_star A_star. +Proof. + rewrite /G_star. + rewrite /A_star /=. + apply: stlc_lam. apply: stlc_lam. apply: stlc_lams; first by apply: repeat_length. + rewrite rev_repeat. + have HSn : forall t, stlc (repeat atom n ++ arr (arr A A) A :: t :: Gamma) (var (S n)) t. + { move=> ?. apply: stlc_var. rewrite nth_error_app2 repeat_length; first lia. + by have ->: S n - n = 1 by lia. } + apply: stlc_case_of; by auto 6 with stlc. +Qed. + +Lemma stlc_G_0 Gamma : stlc Gamma G_0 A_0R. +Proof. + rewrite /G_0 /A_0R /=. + apply: stlc_lam. apply: stlc_lam. apply: stlc_lams; first by apply: repeat_length. + have HSn : forall t, stlc (repeat atom n ++ A :: t :: Gamma) (var (S n)) t. + { move=> ?. apply: stlc_var. rewrite nth_error_app2 repeat_length; first lia. + by have ->: S n - n = 1 by lia. } + rewrite rev_repeat. by apply: stlc_case_of; auto 6 with stlc. +Qed. + +Lemma stlc_G_rule Gamma rule : wf_rule rule -> stlc Gamma (G_R rule) A_0R. +Proof. + move=> [????]. rewrite /G_R /A_0R /=. + apply: stlc_lam. apply: stlc_lam. apply: stlc_lams; first by apply: repeat_length. + have HSn : forall t, stlc (repeat atom n ++ A :: t :: Gamma) (var (S n)) t. + { move=> ?. apply: stlc_var. rewrite nth_error_app2 repeat_length; first lia. + by have ->: S n - n = 1 by lia. } + rewrite rev_repeat. apply: stlc_case_of; [by auto 6 with stlc| |by auto 6 with stlc..]. + apply: stlc_apps; first by apply: stlc_repeat_var_eq. + apply: Forall2_repeat_r'. + - apply /Forall_map /Forall_rev /Forall_forall. + move=> ? /in_seq [??]. by auto with stlc. + - by rewrite map_length rev_length seq_length. +Qed. + +Lemma stlc_sigma_G m k x s : nth_error (Gamma_A m) x = Some s -> stlc [] (sigma_G m k x) s. +Proof. + move=> Hx. + have H'x : x < length (Gamma_A m) by (apply /nth_error_Some; rewrite Hx). + move: (H'x)=> /Gamma_A_vals_spec []; rewrite Hx=> ? [->]. + - move: k=> [|k]. + + rewrite sigma_G_pos_0; first done. + by apply: stlc_delta. + + rewrite sigma_G_pos_S; first done. + case: (Nat.eqb k x); first by apply: stlc_delta. + case: (Nat.eqb k (S x)); by apply: stlc_delta. + - subst x. rewrite sigma_G_star. by apply: stlc_G_star. + - subst x. rewrite sigma_G_fin. by apply: stlc_G_1. + - subst x. rewrite sigma_G_init. by apply: stlc_G_0. + - rewrite length_Gamma_A in H'x. + have ->: x = ((x - 3 - m) + 3 + m) by lia. + case E: (nth_error rules (x - 3 - m)) => [rule|]; first last. + { move=> /nth_error_None in E. lia. } + move: (E) => /nth_error_In. + move: (wf_rules) => /Forall_forall /[apply] ?. + move: E => /sigma_G_rule ->. + by apply: stlc_G_rule. +Qed. + +Lemma stlc_subst_sigma_G m k M t : + stlc (Gamma_A m) M t -> stlc [] (subst (sigma_G m k) M) t. +Proof. + move=> /stlc_subst. apply. by apply: stlc_sigma_G. +Qed. + +Lemma G_0_closed : closed G_0. +Proof. + apply: stlc_closed. by apply: stlc_G_0. +Qed. + +Lemma G_star_closed : closed G_star. +Proof. + apply: stlc_closed. by apply: stlc_G_star. +Qed. + +Lemma G_R_closed rule : wf_rule rule -> closed (G_R rule). +Proof. + move=> ?. apply: stlc_closed. by apply: stlc_G_rule. +Qed. + +Lemma sigma_G_closed m k x P : x < length (Gamma_A m) -> allfv P (sigma_G m k x). +Proof. + move=> /nth_error_Some. + case E: (nth_error (Gamma_A m) x)=> [?|] ?; last done. + move: E=> /(stlc_sigma_G m k x) /stlc_allfv_not_None. + apply: allfv_impl. by case. +Qed. + +Hint Resolve stlc_G_0 stlc_G_1 stlc_G_star : stlc. +Hint Resolve G_0_closed G_star_closed G_R_closed : allfv. + +Lemma sigma_G_0_shift m x : x < m + 3 + length rules -> sigma_G (S m) 0 (S x) = sigma_G m 0 x. +Proof. + rewrite /sigma_G. move=> ?. + have [?|?] : x < m \/ x >= m by lia. + - rewrite [LHS]app_nth1; first by rewrite length_G_pos; lia. + rewrite [RHS]app_nth1; first by rewrite length_G_pos; lia. + rewrite /=. apply: nth_indep. + by rewrite repeat_length. + - rewrite [LHS]app_nth2; first by rewrite length_G_pos; lia. + rewrite [RHS]app_nth2; first by rewrite length_G_pos; lia. + rewrite !length_G_pos. + apply: nth_indep. + rewrite /= map_length. lia. +Qed. + +Lemma sigma_G_S_shift m k x : x < m + 3 + length rules -> sigma_G (S m) (S k) (S x) = sigma_G m k x. +Proof. + have [?|?] : x < m \/ x >= m by lia. + - move: k=> [|k] ?. + + rewrite sigma_G_pos_0; first done. + by rewrite sigma_G_pos_S; first lia. + + by rewrite !sigma_G_pos_S; [lia..|]. + - rewrite /sigma_G. move=> ?. + rewrite [LHS]app_nth2 length_G_pos; first by lia. + rewrite [RHS]app_nth2 length_G_pos; first by lia. + apply: nth_indep. rewrite /= map_length. lia. +Qed. + +Lemma steps_G_star M1 M2 : + steps (apps G_star [M1; M2]) + (lams n + (case_of (app (ren (Nat.add n) M1) (pi top)) + (apps (app (ren (Nat.add n) M2) (delta bullet)) + (single zero (var zero) + (apps (app (ren (Nat.add n) M2) (delta bullet)) + (single dollar (apps (app (ren (Nat.add n) M2) (delta zero)) (single one (var dollar) (var bot))) (var bot))))) + (apps (app (ren (Nat.add n) M2) (delta one)) (single zero (var one) (var bot))) + (apps (app (ren (Nat.add n) M2) (delta bullet)) (single zero (var zero) (var bot))) + (var bot))). +Proof. + rewrite /G_star /=. + apply: rt_trans. + { apply: stepsAppL. by apply: stepsRed. } + rewrite subst_lam. apply: rt_trans; first by apply: stepsRed. + apply: steps_refl. + rewrite subst_subst_term subst_lams subst_case_of /=. + do ? rewrite subst_apps map_single. + rewrite /= !iter_up_eq !subst_delta; [done..|]. + rewrite (iter_up_ge n (S n)); first by lia. + have ->: S n - n = 1 by lia. + rewrite !iter_up_lt /=; [done..|]. + by rewrite subst_ren_term subst_var_term subst_pi. +Qed. + +Lemma steps_G_star_delta M1 M2 i : i < n -> + steps M1 (delta i) -> + steps (apps G_star [M1; lam M2]) + (lams n + (case_of (pi i) + (apps (ren (Nat.add n) (subst (scons (delta bullet) var) M2)) + (single zero (var zero) + (apps (ren (Nat.add n) (subst (scons (delta bullet) var) M2)) + (single dollar (apps (ren (Nat.add n) (subst (scons (delta zero) var) M2)) (single one (var dollar) (var bot))) (var bot))))) + (apps (ren (Nat.add n) (subst (scons (delta one) var) M2)) (single zero (var one) (var bot))) + (apps (ren (Nat.add n) (subst (scons (delta bullet) var) M2)) (single zero (var zero) (var bot))) + (var bot))). +Proof. + move=> ? HM1. apply: rt_trans; first by apply: steps_G_star. + apply: stepsLams. apply: rt_trans. + { apply: steps_case_of_head. apply: rt_trans. + - apply: stepsAppL. apply: steps_ren. by eassumption. + - rewrite ren_delta; first done. by apply: steps_delta_pi_top. } + rewrite /=. apply: rt_trans. + { apply: steps_case_of_fst. apply: rt_trans. + { apply: stepsAppsL. by apply: stepsRed. } + apply: rt_trans. + { apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: stepsAppsL. by apply: stepsRed. } + apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: stepsAppsR. apply: Forall2_single; last by apply: rt_refl. + apply: stepsAppsL. by apply: stepsRed. } + apply: rt_trans. + { apply: steps_case_of_snd. apply: stepsAppsL. by apply: stepsRed. } + apply: rt_trans. + { apply: steps_case_of_trd. apply: stepsAppsL. by apply: stepsRed. } + have E : forall j, j < n -> subst (scons (delta j) var) (ren (scons 0 (fun x : nat => S (n + x))) M2) = + ren (Nat.add n) (subst (scons (delta j) var) M2). + { move=> ??. rewrite subst_ren_term ren_subst_term /=. apply: ext_subst_term=> - [|?]; last done. + by rewrite /= ren_delta. } + apply: steps_refl. by rewrite !E. +Qed. + +Lemma steps_G_star_dollar M1 M2 : + steps M1 (delta bullet) -> + steps (subst (scons (delta bullet) var) M2) (pi dollar) -> + steps (subst (scons (delta zero) var) M2) (pi one) -> + steps (apps G_star [M1; lam M2]) (pi dollar). +Proof. + move=> HM1 H1M2 H2M2. apply: rt_trans. + { move: HM1. by apply: steps_G_star_delta. } + apply: stepsLams. apply: rt_trans; first by apply: steps_case_of_bullet. + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + apply: rt_trans; first by apply: steps_pi_neq. + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + apply: rt_trans; first by apply: steps_pi_eq. + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. +Qed. + +Lemma steps_G_star_one M1 M2 : + steps M1 (delta zero) -> + steps (subst (scons (delta one) var) M2) (pi zero) -> + steps (apps G_star [M1; lam M2]) (pi one). +Proof. + move=> HM1 HM2. apply: rt_trans. + { move: HM1. by apply: steps_G_star_delta. } + apply: stepsLams. apply: rt_trans; first by apply: steps_case_of_L. + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. +Qed. + +Lemma steps_G_star_R_zero M1 M2 : + steps M1 (delta one) -> + steps (subst (scons (delta bullet) var) M2) (pi zero) -> + steps (apps G_star [M1; lam M2]) (pi zero). +Proof. + move=> HM1 HM2. apply: rt_trans. + { move: HM1. by apply: steps_G_star_delta. } + apply: stepsLams. apply: rt_trans; first by apply: steps_case_of_R. + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. +Qed. + +Lemma steps_G_star_bullet_zero M1 M2 : + steps M1 (delta bullet) -> + steps (subst (scons (delta bullet) var) M2) (pi zero) -> + steps (apps G_star [M1; lam M2]) (pi zero). +Proof. + move=> HM1 HM2. apply: rt_trans. + { move: HM1. by apply: steps_G_star_delta. } + apply: stepsLams. apply: rt_trans; first by apply: steps_case_of_bullet. + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. +Qed. + +Lemma steps_G_star_one_elim M1 M2 : + closed M1 -> + stlc [] (lam M2) (arr (arr A A) A) -> + steps (apps G_star [M1; lam M2]) (pi one) -> steps (subst (scons (delta one) var) M2) (pi zero). +Proof. + move=> HM1 /[dup] /stlcE [] ?? [<- <-] H'M2 /stlc_closed HM2. + apply: steps_pi_elim; first by apply: steps_G_star. + move=> /steps_lamsE. rewrite !ren_closed; [by auto with allfv..|]. + move=> H. apply: stlc_pi_intro. + - apply: stlc_subst; first by eassumption. + move=> [|[|?]] /= ?; [|done..]. + move=> [<-]. by apply: stlc_delta. + - move=> *. apply: steps_var_elim H. + { apply: steps_case_of_snd. apply: stepsAppsL. + apply: rt_trans; first by apply: stepsRed. + by eassumption. } + apply: steps_var_elim. + { apply: steps_case_of_snd. by apply: steps_pi_neq. } + apply: steps_var_absurd. + have ? : bot <> one by done. + apply: allfv_case_of; by auto 9 with allfv. +Qed. + +Lemma steps_G_star_dollar_elim M1 M2 : + closed M1 -> + stlc [] (lam M2) (arr (arr A A) A) -> + steps (apps G_star [M1; lam M2]) (pi dollar) -> + steps (subst (scons (delta bullet) var) M2) (pi dollar) /\ steps (subst (scons (delta zero) var) M2) (pi one). +Proof. + move=> HM1 /[dup] /stlcE [] ?? [<- <-] H'M2 /stlc_closed HM2. + apply: steps_pi_elim; first by apply: steps_G_star. + move=> /steps_lamsE. rewrite !ren_closed; [by auto with allfv..|]. + move=> H [: H']. split. + - abstract: H'. apply: stlc_pi_intro. + + apply: stlc_subst; first by eassumption. + move=> [|[|?]] /= ?; [|done..]. + move=> [<-]. by apply: stlc_delta. + + move=> *. apply: steps_var_elim H. + { apply: steps_case_of_fst. apply: stepsAppsR. + apply: Forall2_single; first by apply: rt_refl. + apply: rt_trans. + - apply: stepsAppsL. apply: rt_trans; first by apply: stepsRed. + by eassumption. + - by apply: steps_pi_neq. } + apply: steps_var_absurd. + by apply: allfv_case_of; auto 8 with allfv. + - apply: stlc_pi_intro. + + apply: stlc_subst; first by eassumption. + move=> [|[|?]] /= ?; [|done..]. + move=> [<-]. by apply: stlc_delta. + + move=> *. apply: steps_var_elim H. + { apply: steps_case_of_fst. apply: rt_trans. + - apply: stepsAppsL. apply: rt_trans; first by apply: stepsRed. + by apply: H'. + - by apply: steps_pi_neq. } + apply: steps_var_elim. + { apply: steps_case_of_fst. apply: rt_trans. + - apply: stepsAppsL. apply: rt_trans; first by apply: stepsRed. + by apply: H'. + - by apply: steps_pi_eq. } + apply: steps_var_elim. + { apply: steps_case_of_fst. apply: rt_trans. + - apply: stepsAppsL. apply: rt_trans; first by apply: stepsRed. + by eassumption. + - by apply: steps_pi_neq. } + apply: steps_var_absurd. + by apply: allfv_case_of; auto 8 with allfv. +Qed. + +Lemma steps_G_star_zero_elim M1 M2 : + closed M1 -> + stlc [] (lam M2) (arr (arr A A) A) -> + steps (apps G_star [M1; lam M2]) (pi zero) -> steps (subst (scons (delta bullet) var) M2) (pi zero). +Proof. + move=> HM1 /[dup] /stlcE [] ?? [<- <-] H'M2 /stlc_closed HM2. + apply: steps_pi_elim; first by apply: steps_G_star. + move=> /steps_lamsE. rewrite !ren_closed; [by auto with allfv..|]. + move=> H. apply: stlc_pi_intro. + - apply: stlc_subst; first by eassumption. + move=> [|[|?]] /= ?; [|done..]. + move=> [<-]. by apply: stlc_delta. + - move=> *. apply: steps_var_elim H. + { apply: steps_case_of_fst. apply: rt_trans. + - apply: stepsAppsL. apply: rt_trans; last by eassumption. + by apply: stepsRed. + - by apply: steps_pi_neq. } + apply: steps_var_elim. + { apply: steps_case_of_trd. apply: rt_trans. + - apply: stepsAppsL. apply: rt_trans; last by eassumption. + by apply: stepsRed. + - by apply: steps_pi_neq. } + apply: steps_var_absurd. + have ? : dollar <> zero by done. + have ? : bot <> zero by done. + by apply: allfv_case_of; auto 10 with allfv. +Qed. + +Lemma steps_G_0 {M N M'} : + steps M M' -> + steps (app (app G_0 N) M) + (lams n (case_of (app (ren (Nat.add n) (subst (scons M var) (ren S N))) (pi top)) + (apps (ren (Nat.add n) M') (single zero (var zero) (apps (ren (Nat.add n) M') (single one (var dollar) (var bot))))) + (apps (ren (Nat.add n) M') (single zero (var one) (var bot))) + (apps (ren (Nat.add n) M') (single zero (var zero) (var bot))) + (var bot))). +Proof. + move=> HM. apply: rt_trans. + { rewrite /G_0 /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + rewrite subst_subst_term subst_lams subst_case_of. + do 2 rewrite !subst_apps !map_single /=. + rewrite (iter_up_ge _ (S n)); first by lia. + have ->: S n - n = 1 by lia. + rewrite iter_up_eq /(up _ 0) /(up _ 1) /= subst_pi; first done. + rewrite !iter_up_lt; [done..|]. + apply: stepsLams. apply: rt_trans. + { apply: steps_case_of_fst. apply: rt_trans. + - apply: stepsAppsL. apply: steps_ren. by eassumption. + - apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + apply: stepsAppsL. apply: steps_ren. by eassumption. } + apply: rt_trans. + { apply: steps_case_of_snd. apply: stepsAppsL. apply: steps_ren. by eassumption. } + apply: rt_trans. + { apply: steps_case_of_trd. apply: stepsAppsL. apply: steps_ren. by eassumption. } + by apply: rt_refl. +Qed. + +Lemma steps_G_0_bullet M : steps (app (app G_0 (delta bullet)) M) + (lams n (apps (ren (Nat.add n) M) (single zero (var zero) (apps (ren (Nat.add n) M) (single one (var dollar) (var 0)))))). +Proof. + apply: rt_trans. + { apply: steps_G_0. by apply: rt_refl. } + rewrite ren_subst_term subst_ren_term subst_delta; first done. + apply: stepsLams. apply: rt_trans. + { apply: steps_case_of_head. by apply: steps_delta_pi_top. } + by apply: steps_case_of_bullet. +Qed. + +Lemma steps_G_0_L M : steps (app (app G_0 (delta zero)) M) + (lams n (apps (ren (Nat.add n) M) (single zero (var one) (var bot)))). +Proof. + apply: rt_trans. + { apply: steps_G_0. by apply: rt_refl. } + rewrite ren_subst_term subst_ren_term subst_delta; first done. + apply: stepsLams. apply: rt_trans. + { apply: steps_case_of_head. by apply: steps_delta_pi_top. } + by apply: steps_case_of_L. +Qed. + +Lemma steps_G_0_R M : steps (app (app G_0 (delta one)) M) + (lams n (apps (ren (Nat.add n) M) (single zero (var zero) (var bot)))). +Proof. + apply: rt_trans. + { apply: steps_G_0. by apply: rt_refl. } + rewrite ren_subst_term subst_ren_term subst_delta; first done. + apply: stepsLams. apply: rt_trans. + { apply: steps_case_of_head. by apply: steps_delta_pi_top. } + by apply: steps_case_of_R. +Qed. + +Lemma steps_G_0_dollar_elim M N : + stlc [] M A -> + steps (app (app G_0 N) M) (pi dollar) -> + steps M (pi one). +Proof. + move=> /stlc_pi_intro + H. apply=> *. + apply: steps_pi_elim H. + { apply: steps_G_0. by eassumption. } + move=> /steps_lamsE. rewrite ren_pi; first done. + apply: steps_var_elim. + { apply: steps_case_of_fst. apply: stepsAppsR. apply: Forall2_single; first by apply: rt_refl. + by apply: steps_pi_neq. } + apply: steps_var_absurd. + apply: allfv_case_of; by auto with allfv. +Qed. + +Lemma steps_G_0_one_elim M N : + stlc [] M A -> + steps (app (app G_0 N) M) (pi one) -> + steps M (pi zero). +Proof. + move=> /stlc_pi_intro + H. apply=> *. + apply: steps_pi_elim H. + { apply: steps_G_0. by eassumption. } + move=> /steps_lamsE. rewrite ren_pi; first done. + apply: steps_var_elim. + { apply: steps_case_of_fst. by apply: steps_pi_neq. } + apply: steps_var_elim. + { apply: steps_case_of_snd. by apply: steps_pi_neq. } + apply: steps_var_elim. + { apply: steps_case_of_trd. by apply: steps_pi_neq. } + apply: steps_var_absurd. + have ? : bot <> one by done. + by apply: allfv_case_of; auto with allfv. +Qed. + +Lemma steps_G_0_zero_elim M N : + stlc [] M A -> + steps (app (app G_0 N) M) (pi zero) -> + steps M (pi zero). +Proof. + move=> /stlc_pi_intro + H. apply=> *. + apply: steps_pi_elim H. + { apply: steps_G_0. by eassumption. } + move=> /steps_lamsE. rewrite ren_pi; first done. + apply: steps_var_elim. + { apply: steps_case_of_fst. by apply: steps_pi_neq. } + apply: steps_var_elim. + { apply: steps_case_of_snd. by apply: steps_pi_neq. } + apply: steps_var_elim. + { apply: steps_case_of_trd. by apply: steps_pi_neq. } + apply: steps_var_absurd. + have ? : dollar <> zero by done. + have ? : bot <> zero by done. + apply: allfv_case_of; auto with allfv. +Qed. + +Lemma steps_G_R_bullet' rule M N : + (forall sigma N', steps (app (subst sigma N) N') (app (delta bullet) N')) -> + steps (app (app (G_R rule) N) M) (lams n (apps (ren (Nat.add n) M) (map var (rev (seq 0 n))))). +Proof. + move=> HN. + apply: rt_trans. + { rewrite /G_R /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + rewrite !subst_lams. apply: stepsLams. + apply: rt_trans. + { rewrite !subst_case_of /= !subst_pi; [done..|]. + rewrite -Nat.iter_succ_r iter_up_eq. + apply: steps_case_of_head. rewrite subst_ren_term. by apply: HN. } + apply: rt_trans. + { apply: steps_case_of_head. by apply: steps_delta_pi_top. } + apply: rt_trans. + { by apply: steps_pi_eq. } + apply: steps_refl. + rewrite !subst_apps /=. + rewrite -Nat.iter_succ iter_up_lt; first lia. + rewrite /= iter_up_eq /= !map_map. + congr (apps _ _). apply /map_ext_in_iff. + move=> x /(iffRL (in_rev _ _)) /in_seq ?. + rewrite subst_subst_term/=. + rewrite -Nat.iter_succ iter_up_lt; first lia. + rewrite /= iter_up_lt; by [|lia]. +Qed. + +Lemma steps_G_R_bullet rule M : steps (app (app (G_R rule) (delta bullet)) M) (lams n (apps (ren (Nat.add n) M) (map var (rev (seq 0 n))))). +Proof. + apply: steps_G_R_bullet'=> *. apply: steps_refl. by rewrite subst_delta. +Qed. + +Lemma steps_G_R_L' rule M N : + (forall sigma N', steps (app (subst sigma N) N') (app (delta zero) N')) -> + wf_rule rule -> + steps (app (app (G_R rule) N) M) (lams n (apps (ren (Nat.add n) M) ((single (sym (fst (snd rule))) (var (sym (fst (fst rule)))) (var bot))))). +Proof. + move=> HN [????]. apply: rt_trans. + { rewrite /G_R /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + rewrite !subst_lams. apply: stepsLams. + apply: rt_trans. + { rewrite !subst_case_of /=. + rewrite !subst_pi; [done..|]. + rewrite -/(up _) -Nat.iter_succ_r iter_up_eq /=. + apply: steps_case_of_head. apply: rt_trans. + - rewrite subst_ren_term. by apply: HN. + - by apply: steps_delta_pi_top. } + apply: rt_trans. + { by apply: steps_case_of_L. } + apply: steps_refl. + rewrite !subst_apps /=. + rewrite -Nat.iter_succ iter_up_lt; first lia. + rewrite /= iter_up_eq /= !map_map map_single. + congr (apps _ _). congr single. + rewrite /= -Nat.iter_succ iter_up_lt; first lia. + by rewrite /= iter_up_lt. +Qed. + +Lemma steps_G_R_L rule M : wf_rule rule -> steps (app (app (G_R rule) (delta zero)) M) (lams n (apps (ren (Nat.add n) M) ((single (sym (fst (snd rule))) (var (sym (fst (fst rule)))) (var bot))))). +Proof. + apply: steps_G_R_L'=> *. apply: steps_refl. by rewrite subst_delta. +Qed. + +Lemma steps_G_R_R' rule M N : + (forall sigma N', steps (app (subst sigma N) N') (app (delta one) N')) -> + wf_rule rule -> + steps (app (app (G_R rule) N) M) (lams n (apps (ren (Nat.add n) M) ((single (sym (snd (snd rule))) (var (sym (snd (fst rule)))) (var bot))))). +Proof. + move=> HN [????]. apply: rt_trans. + { rewrite /G_R /=. apply: stepsAppL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + rewrite !subst_lams. apply: stepsLams. + apply: rt_trans. + { rewrite !subst_case_of /=. + rewrite !subst_pi; [done..|]. + rewrite -Nat.iter_succ_r iter_up_eq /=. + apply: steps_case_of_head. apply: rt_trans. + - rewrite subst_ren_term. by apply: HN. + - by apply: steps_delta_pi_top. } + apply: rt_trans. + { by apply: steps_case_of_R. } + apply: steps_refl. + rewrite !subst_apps /=. + rewrite -Nat.iter_succ iter_up_lt; first lia. + rewrite /= iter_up_eq /= !map_map map_single. + congr (apps _ _). congr single. + rewrite /= -Nat.iter_succ iter_up_lt; first lia. + by rewrite /= iter_up_lt. +Qed. + +Lemma steps_G_R_R rule M : wf_rule rule -> steps (app (app (G_R rule) (delta one)) M) (lams n (apps (ren (Nat.add n) M) ((single (sym (snd (snd rule))) (var (sym (snd (fst rule)))) (var bot))))). +Proof. + apply: steps_G_R_R'=> *. apply: steps_refl. by rewrite subst_delta. +Qed. + +Lemma steps_G_R_bullet_elim' M N i rule : + (forall sigma N', steps (app (subst sigma N) N') (app (delta bullet) N')) -> + i < n -> + stlc [] M A -> + steps (app (app (G_R rule) N) M) (pi i) -> + steps M (pi i). +Proof. + move=> HN ? /stlc_pi_intro + H. apply=> *. + apply: steps_pi_elim H; first by apply: steps_G_R_bullet'. + move=> /steps_lamsE. apply: steps_var_elim. + { apply: rt_trans. + - apply: stepsAppsL. apply: steps_ren. by eassumption. + - rewrite ren_pi; first done. by apply: steps_pi_full. } + by apply: steps_var_absurd. +Qed. + +Lemma steps_G_R_bullet_elim M i rule : + i < n -> + stlc [] M A -> + steps (app (app (G_R rule) (delta bullet)) M) (pi i) -> + steps M (pi i). +Proof. + apply: steps_G_R_bullet_elim'=> ??. apply: steps_refl. by rewrite subst_delta. +Qed. + +Lemma steps_G_R_L_elim' M N rule a : + (forall sigma N', steps (app (subst sigma N) N') (app (delta zero) N')) -> + wf_rule rule -> + stlc [] M A -> + steps (app (app (G_R rule) N) M) (pi (sym a)) -> + fst (fst rule) = a /\ steps M (pi (sym (fst (snd rule)))). +Proof. + move=> HN /[dup] - [????] ? /stlc_pi_intro HM +. + apply: steps_pi_elim; first by apply: steps_G_R_L'. + move=> /steps_lamsE H'M [: H']. + split; first last. + - abstract: H'. apply: HM=> *. + apply: steps_var_elim H'M. + { apply: rt_trans. + - apply: stepsAppsL. apply: steps_ren. by eassumption. + - rewrite ren_pi; first done. by apply: steps_pi_neq. } + by apply: steps_var_absurd. + - apply: steps_var_elim H'M. + { apply: rt_trans. + - apply: stepsAppsL. apply: steps_ren. by apply: H'. + - rewrite ren_pi; first done. by apply: steps_pi_eq. } + move=> /normal_form_steps. apply: unnest; first by do 2 constructor. + by case. +Qed. + +Lemma steps_G_R_L_elim M rule a : + wf_rule rule -> + stlc [] M A -> + steps (app (app (G_R rule) (delta zero)) M) (pi (sym a)) -> + fst (fst rule) = a /\ steps M (pi (sym (fst (snd rule)))). +Proof. + apply: steps_G_R_L_elim'=> ??. apply: steps_refl. by rewrite subst_delta. +Qed. + +Lemma steps_G_R_R_elim' M N rule b : + (forall sigma N', steps (app (subst sigma N) N') (app (delta one) N')) -> + wf_rule rule -> + stlc [] M A -> + steps (app (app (G_R rule) N) M) (pi (sym b)) -> + snd (fst rule) = b /\ steps M (pi (sym (snd (snd rule)))). +Proof. + move=> HN /[dup] - [????] ? /stlc_pi_intro HM +. + apply: steps_pi_elim; first by apply: steps_G_R_R'. + move=> /steps_lamsE H'M [: H']. + split; first last. + - abstract: H'. apply: HM=> *. + apply: steps_var_elim H'M. + { apply: rt_trans. + - apply: stepsAppsL. apply: steps_ren. by eassumption. + - rewrite ren_pi; first done. by apply: steps_pi_neq. } + by apply: steps_var_absurd. + - apply: steps_var_elim H'M. + { apply: rt_trans. + - apply: stepsAppsL. apply: steps_ren. by apply: H'. + - rewrite ren_pi; first done. by apply: steps_pi_eq. } + move=> /normal_form_steps. apply: unnest; first by do 2 constructor. + by case. +Qed. + +Lemma steps_G_R_R_elim M rule b : + wf_rule rule -> + stlc [] M A -> + steps (app (app (G_R rule) (delta one)) M) (pi (sym b)) -> + snd (fst rule) = b /\ steps M (pi (sym (snd (snd rule)))). +Proof. + apply: steps_G_R_R_elim'=> ??. apply: steps_refl. by rewrite subst_delta. +Qed. + +Opaque G_R G_1 G_0 G_pos G_star. + +(* Soundness : + given a simple semi-Thue system, + if the constructed higher-order matching instance is solvable, + then 0..0 rewrites to 1..1 *) + +(* x_R x_p M or x_R (\w.x_p w) M *) +(* rule application term or concluding term *) +Inductive ring2 (l : nat) : term -> Prop := + | ring2_intro x y M : ring2 l M -> x < length rules -> y < l -> ring2 l (app (app (var (x + 3 + l)) (var y)) M) + | ring2_intro_eta x y M : ring2 l M -> x < length rules -> y < l -> ring2 l (app (app (var (x + 3 + l)) (lam (app (var (S y)) (var 0)))) M) + | ring2_fin : ring2 l (var (S l)). + +(* x_star N (\x_p.M) *) +(* word expansion term or init rule application term *) +Inductive ring1 (l : nat) : term -> Prop := + | ring1_intro M N : ring1 (S l) M -> ring1 l (apps (var l) [N; lam M]) + | ring1_init M N : ring2 l M -> ring1 l (apps (var (2 + l)) [N; M]). + +Lemma well_typed_neutral_shape m x Ms ss i : + nth_error (Gamma_A m) x = Some (arrs ss A) -> + length Ms = length ss -> + S i < n -> + steps (apps (sigma_H m x) Ms) (pi (S i)) -> + if Nat.eqb (S i) bullet then x < m else + if Nat.eqb (S i) dollar then x = m \/ x = S (S m) else + if Nat.eqb (S i) one then x = S m \/ x > S (S m) else + False. +Proof. + move=> H''x. + have Hx : x < length (Gamma_A m). + { apply /nth_error_Some. by rewrite H''x. } + move: (Hx) (H''x) => /Gamma_A_vals_spec [] H'x -> []. + - rewrite sigma_H_pos; first done. + move=> /(arrs_inj [_]) ?. subst ss. + move: Ms=> [|M [|??]] ??; [done| |done]. + have [-> /=|?] : S i = bullet \/ S i <> bullet by lia. + * done. + * apply: steps_pi_elim; first by apply: step_delta. + move=> /steps_lamsE. apply: steps_var_absurd. + apply: allfv_apps; last by auto with allfv. + apply: allfv_ren. apply: allfv_trivial=> /=. lia. + - subst x. rewrite sigma_H_space. + move=> /(arrs_inj [_; _]) ?. subst ss. + move: Ms=> [|M1 [|M2 [|??]]] ??; [done|done| |done]. + have [-> /=|?] : (S i) = dollar \/ dollar <> (S i) by lia. + * by lia. + * apply: steps_pi_elim; first by apply: steps_H_star. + move=> /steps_lamsE. apply: steps_var_absurd. + apply: allfv_apps; last by auto with allfv. + apply: allfv_ren. apply: allfv_trivial=> /=. lia. + - subst x. rewrite sigma_H_fin. + move=> /(arrs_inj []) ?. subst ss. + move: Ms=> [|??] ??; [|done]. + have [-> /=|?] : (S i) = one \/ one <> (S i) by lia. + * by lia. + * move=> /steps_lamsE. by apply: steps_var_absurd. + - subst x. rewrite sigma_H_init. + move=> /arrs_inj ?. subst ss. + move: Ms=> [|M1 [|M2 [|??]]] ??; [done|done| |done]. + have [-> /=|?] : (S i) = dollar \/ dollar <> (S i) by lia. + + by lia. + + apply: steps_pi_elim; first by apply: steps_H_0. + move=> /steps_lamsE. apply: steps_var_absurd. + apply: allfv_apps; last by auto with allfv. + apply: allfv_ren. apply: allfv_trivial=> /=. lia. + - rewrite sigma_H_rule; [done..|]. + move=> /arrs_inj ?. subst ss. + move: Ms=> [|M1 [|M2 [|??]]] ??; [done|done| |done]. + have [-> /=|?] : (S i) = one \/ one <> (S i) by lia. + + by lia. + + apply: steps_pi_elim; first by apply: steps_H_R. + move=> /steps_lamsE. apply: steps_var_absurd. + apply: allfv_apps. + * apply: allfv_ren. apply: allfv_trivial=> /=. lia. + * constructor; first by auto with allfv. + apply: Forall_single; last done. + apply: allfv_apps; last by auto with allfv. + apply: allfv_ren. apply: allfv_trivial=> /=. lia. +Qed. + +Lemma well_typed_neutral_shape' m x Ms ss N1 N2 i j : + nth_error (Gamma_A m) x = Some (arrs ss A) -> + length Ms = length ss -> + stlc [] (apps (sigma_H m x) Ms) A -> + allfv (fun y => y <> j) N2 -> + S i < n -> + steps (apps (apps (sigma_H m x) Ms) (single (S i) N1 N2)) (var j) -> + if Nat.eqb (S i) bullet then x < m else + if Nat.eqb (S i) dollar then x = m \/ x = S (S m) else + if Nat.eqb (S i) one then x = S m \/ x > S (S m) else + False. +Proof. + move=> /well_typed_neutral_shape /[apply] H /stlc_pi_intro Hx HN2 /[dup] ? /H {}H H'x. + apply: H. apply: Hx=> *. + apply: steps_var_elim H'x. + { apply: rt_trans. + - apply: stepsAppsL. by eassumption. + - by apply: steps_pi_neq. } + by apply: steps_var_absurd. +Qed. + +Lemma construct_ring2 M m : + normal_form M -> + stlc (Gamma_A m) M A -> + steps (subst (sigma_F m) M) (var m) -> + steps (subst (sigma_H m) M) (pi one) -> + ring2 m M. +Proof. + elim /(Nat.measure_induction _ term_size): M => M IH HM H'M. + case /normal_form_nf: HM H'M IH; first by move=> ???? /steps_lamE. + move=> {}M=> /neutralE' [x] [Ms] [->] HMs /stlc_appsE [ss] [H'Ms] /stlcE. + move=> /[dup] /nth_error_Some' ? Hx IH Hm. + rewrite !subst_apps /=. + move: (Hx)=> /well_typed_neutral_shape + /[dup] => /[apply]. + apply: unnest. { move: H'Ms => /Forall2_length. by rewrite map_length. } + apply: unnest; first done. + case. + - (* x_fin *) + move=> ?. subst x. + move: (Hx). rewrite Gamma_A_fin=> - [/(arrs_inj [])] ?. subst ss. + move: Ms H'Ms Hm IH {HMs}=> [|??] /Forall2_length; [|done]. + move=> *. by constructor. + - (* x_rule _ _ *) + move=> ?. have ? : x > S m by lia. + have ? : x < m + 3 + length rules by (by rewrite -length_Gamma_A). + move: Hx. rewrite Gamma_A_rule; [done..|]. + move=> - [/arrs_inj] ?. subst ss. + move: Ms H'Ms HMs Hm IH => [|N1 [|N2 [|??]]] /[dup] /Forall2_length; [done|done| |done]. + move=> _ /Forall2_cons_iff [H'N1] /Forall2_cons_iff [H'N2] _. + move=> /Forall_cons_iff [HN1] /Forall_cons_iff [HN2] _. + rewrite !subst_apps /= sigma_F_rule; [done..|]. + apply: steps_var_elim; first by apply: steps_F_R. + move=> Hm IH. rewrite sigma_H_rule; [done..|]. + apply: steps_pi_elim; first by apply: steps_H_R. + rewrite !ren_closed; [apply: allfv_closed; apply: subst_sigma_H_closed; eassumption..|]. + case /normal_form_nf: HN1 H'N1 Hm IH. + + (* x_rule (lam _) _ *) + move=> {}N1 HN1 /stlcE [] ?? [<- <-] H'N1 /=. + apply: steps_var_elim; first by apply: stepsRed. + case /normal_form_nf: HN1 H'N1; first by move=> ??? /steps_lamE. + move=> {}N1 /neutralE' [y] [Ms] [->] HMs /stlc_appsE [ss] [H'Ms] /stlcE. + move: y=> [|y]. + * (* x_rule (lam (var 0)) _ - semantic contradiction *) + move=> /= [] /(arrs_inj []) ?. subst ss. + move: Ms H'Ms {HMs}=> [|??] /Forall2_length; [|done]. + move=> _ /= Hm _ /steps_lamsE. + apply: steps_var_elim; first by apply /stepsAppsL /stepsRed. + apply: steps_var_elim; first by apply /steps_pi_neq. + by apply: steps_var_absurd. + * move=> /= Hy Hm IH /steps_lamsE. + apply: steps_var_elim; first by apply /stepsAppsL /stepsRed. + have ? : y < length (Gamma_A m) by (apply /nth_error_Some; rewrite Hy). + rewrite subst_subst_term subst_apps /= subst_ren_term. + rewrite (subst_closed _ (sigma_H m y)); first by auto with allfv. + move=> /[dup]. move: (Hy)=> /well_typed_neutral_shape' /[apply]. + apply: unnest. { move: H'Ms => /Forall2_length. by rewrite map_length. } + apply: unnest. + { apply: stlc_apps. + - apply: stlc_sigma_H. by eassumption. + - apply /Forall2_map_l. apply: Forall2_impl H'Ms. + move=> ?? /stlc_subst. apply=> - [|z] /=. + + move=> ? [<-]. by apply: stlc_pi. + + move=> ? /[dup] ? /nth_error_Some' Hz. rewrite subst_ren_term subst_closed. + * by auto with allfv. + * by apply: stlc_sigma_H. } + apply: unnest; first done. + apply: unnest; first done. + move=> ?. move: Hy. rewrite Gamma_A_pos; first done. + move=> [] /(arrs_inj [_]) ?. subst ss. + move: Ms H'Ms HMs Hm IH=> [|{}N1 [|??]] /[dup] /Forall2_length; [done| |done]. + move=> _ /Forall2_cons_iff [H'N1] _ /Forall_cons_iff [HN1] _. + rewrite !subst_apps subst_ren_term sigma_F_pos /=; first done. + apply: steps_var_elim; first by apply: stepsRed. + case /normal_form_nf: HN1 H'N1; first by move=> ??? /steps_lamE. + move=> {}N1 /neutralE' [z] [Ms] [->] HMs /stlc_appsE [ss] [H'Ms] /stlcE. + move: z=> [|z]. + { (* ring2 intro eta *) + move=> /= [] /(arrs_inj []) ?. subst ss. + move: Ms H'Ms {HMs}=> [|??] /Forall2_length; last done. + move=> _ /= Hm IH H_lift. + have ->: x = (x - 3 - m) + 3 + m by lia. + constructor; [|lia..]. + apply: IH; [lia|done..|]. + move: H_lift. rewrite sigma_H_pos; first done. + apply: steps_var_elim; first by apply: steps_delta_eq. + apply: steps_var_elim; first by apply: steps_pi_eq. + by apply: steps_subst_sigma_H_pi_intro. } + move=> /= Hz Hm _. rewrite sigma_H_pos; first done. + apply: steps_var_elim; first by apply: steps_delta_eq. + rewrite subst_apps /=. + have ? : z < length (Gamma_A m) by (apply /nth_error_Some; rewrite Hz). + rewrite subst_ren_term (subst_closed _ (sigma_H m z)); first by auto with allfv. + move=> /[dup]. move: (Hz)=> /well_typed_neutral_shape' /[apply]. + apply: unnest. { move: H'Ms=> /Forall2_length. by rewrite map_length. } + apply: unnest. + { apply: stlc_apps. + - apply: stlc_sigma_H. by eassumption. + - apply /Forall2_map_l. apply: Forall2_impl H'Ms. + move=> ?? /stlc_subst. apply=> - [|z'] /=. + + move=> ? [<-]. by apply: stlc_pi. + + move=> ? /[dup] ? /nth_error_Some' Hz'. rewrite subst_ren_term subst_closed. + * by auto with allfv. + * by apply: stlc_sigma_H. } + apply: unnest; first done. + by apply: unnest; first done. + + move=> {}N1 /neutralE' [y] [Ms] [->] _ /stlc_appsE [ss] [H'Ms] /stlcE Hy Hm IH. + rewrite subst_apps /= (apps_apps _ [_]) apps_apps app_assoc -apps_apps. + move=> /[dup]. move: (Hy). rewrite (arrs_arrs _ [_]). + move=> + /steps_lamsE. + have ? : y < length (Gamma_A m) by (apply /nth_error_Some; rewrite Hy). + move=> /well_typed_neutral_shape' /[apply]. + apply: unnest. { rewrite !app_length !map_length. by move: H'Ms => /Forall2_length ->. } + apply: unnest. + { apply: stlc_apps. + - apply: stlc_sigma_H. + move: Hy. change (arrs ss (arr A A)) with (arrs ss (arrs [A] A)). + rewrite arrs_arrs. by apply. + - apply: Forall2_app. + + apply /Forall2_map_l. apply: Forall2_impl H'Ms. + move=> ?? /stlc_subst. apply=> *. + by apply: stlc_sigma_H. + + by constructor; [apply: stlc_pi|]. } + apply: unnest; first done. + apply: unnest; first done. + move=> ?. move: Hy. rewrite Gamma_A_pos; first done. + move=> [] /(arrs_inj []) ?. subst ss. + move: Ms H'Ms Hm IH=> [|??] /Forall2_length; last done. + move=> _ /=. rewrite sigma_F_pos; first done. + apply: steps_var_elim; first by apply: stepsRed. + move=> /= Hm IH H_lift. + have ->: x = (x - 3 - m) + 3 + m by lia. + constructor; [|lia..]. + apply: IH; [lia|done..|]. + move: H_lift=> /steps_lamsE. rewrite sigma_H_pos; first done. + apply: steps_var_elim; first by apply: steps_delta_eq. + apply: steps_var_elim; first by apply: steps_pi_eq. + by apply: steps_subst_sigma_H_pi_intro. +Qed. + +Lemma construct_ring1 M m : + normal_form M -> + stlc (Gamma_A m) M A -> + steps (subst (sigma_F m) M) (var m) -> + steps (subst (sigma_H m) M) (pi dollar) -> + ring1 m M. +Proof. + elim /(Nat.measure_induction _ term_size): M m => M IH m HM H'M. + case /normal_form_nf: HM H'M IH; first by move=> ???? /steps_lamE. + move=> {}M HM H'M IH. + move: HM H'M IH=> /neutralE' [x] [Ms] [->] HMs /stlc_appsE [ss] [H'Ms] /stlcE Hx IH Hm. + rewrite !subst_apps /= => /[dup]. + move: (Hx)=> /well_typed_neutral_shape /[apply]. + apply: unnest. { rewrite map_length. by apply: Forall2_length H'Ms. } + apply: unnest; first done. + case=> ?; subst x. + - (* x_space _ *) + move: Hx. rewrite Gamma_A_space=> - [/(arrs_inj [_; _])] ?. subst ss. + move: Ms H'Ms HMs Hm IH (H'Ms)=> [|? [|{}M [|??]]] /Forall2_length; [done|done| |done]. + move=> _ /Forall_cons_iff [_] /Forall_cons_iff [HM] _. + rewrite /= sigma_F_space sigma_H_space. + apply: steps_var_elim; first by apply: steps_F_star. + case /normal_form_nf: HM. + + (* x_space (lam _) *) + move=> {}M HM /=. + apply: steps_var_elim; first by apply: stepsRed. + case /normal_form_nf: HM; first by move=> ?? /steps_lamE. + (* x_space (lam (apps y _)) *) + move=> {}M HM. rewrite subst_subst_term /= => Hm IH. + move=> /Forall2_cons_iff [_] /Forall2_cons_iff [] /stlcE [] ?? [] <- <- H'M _ H_lift. + constructor. apply: IH. + * by lia. + * by apply: neutral_normal_form. + * done. + * move: Hm => /(steps_ren S). congr steps. + rewrite ren_subst_term. + apply: ext_stlc_subst_term H'M=> - [|y] /=; first done. + move=> /nth_error_Some ?. rewrite subst_ren_term /= subst_var_term. + by apply: ren_S_sigma_F. + * move: H_lift. apply: steps_pi_elim. + { apply: rt_trans. + - by apply: steps_H_star. + - move=> /=. apply: stepsLams. apply: stepsAppsL. by apply: stepsRed. } + move=> /steps_lamsE. + replace (subst (scons (delta bullet) var) _) with (subst (sigma_H (S m)) M); first last. + { rewrite subst_ren_term subst_subst_term. + apply: ext_stlc_subst_term H'M=> - [|x] /=; first done. + move=> /nth_error_Some ?. + rewrite subst_ren_term subst_closed; first by auto with allfv. + rewrite -ren_S_sigma_H; first done. + by rewrite ren_closed; auto with allfv. } + by apply: steps_subst_sigma_H_pi_intro. + + (* x_space (apps (var y) _) - typing error / semantic error *) + move=> {}M /neutralE' [y] [Ms] [->] _ _ _. + move=> /Forall2_cons_iff [_] /Forall2_cons_iff [] /stlc_appsE [ss] [H'Ms] /stlcE Hy. + have : y < length (Gamma_A m) by apply /nth_error_Some; rewrite Hy. + rewrite (arrs_arrs _ [_]) in Hy. + move=> /Gamma_A_vals_spec [] ?; rewrite Hy. + * move=> [] /(arrs_inj _ [_]). by move: (ss) => [|? [|??]]. + * move=> [] /arrs_inj. by move: (ss) => [|?[|?[|??]]]. + * move=> [] /= /(f_equal ty_size). rewrite ty_size_arrs map_app list_sum_app /=. lia. + * move=> [] /arrs_inj. by move: (ss) => [|?[|?[|??]]]. + * move=> [] /arrs_inj. by move: (ss) => [|?[|?[|??]]]. + - (* x_0 _ _ *) + move: Hx. rewrite Gamma_A_init. + move=> [/arrs_inj] ?. subst ss. + move: Ms H'Ms HMs Hm {IH} (H'Ms)=> [|M1 [|M2 [|??]]] /Forall2_length; [done|done| |done]. + move=> _ /Forall_cons_iff [HM1] /Forall_cons_iff [HM2] _. + rewrite !subst_apps /= sigma_H_init sigma_F_init. + apply: steps_var_elim; first by apply: steps_F_0. + move=> ? /Forall2_cons_iff [H'M1] /Forall2_cons_iff [H'M2] _ H. + constructor. apply: construct_ring2; [done..|]. + move: H. apply: steps_pi_elim; first by apply: steps_H_0. + move=> /steps_lamsE. rewrite ren_closed. + { apply: allfv_closed. move: (H'M2)=> /stlc_subst_sigma_H /stlc_allfv_not_None + ?. + apply: allfv_impl. by case. } + by apply: steps_subst_sigma_H_pi_intro. +Qed. + +Lemma construct_initial_abstractions (M : term) k1 k2 : + normal_form M -> + stlc (repeat A_0R k1) M (arrs (repeat A_0R k2 ++ [A; A_star; arr A A]) A) -> + exists N, M = lams (k2 + 2) N /\ normal_form N. +Proof. + elim: k2 k1 M. + - move=> k1 M /normal_form_nf []. + + move=> ? /normal_form_nf []; first by eexists. + move=> ? /neutralE' [x] [?] [->] _ /= /stlcE [] ?? [<- <-]. + move=> /stlc_appsE [ss] [_] /stlcE. + case: x. + * move=> [] /(f_equal ty_size). rewrite ty_size_arrs /=. lia. + * move=> x /= /[dup] H. rewrite nth_error_repeat. + { rewrite -(repeat_length A_0R k1). apply /nth_error_Some. by rewrite H. } + move=> [] /(f_equal ty_size). rewrite ty_size_arrs /=. lia. + + move=> ? /neutralE' [x] [?] [->] _ /stlc_appsE [ss] [_] /stlcE. + move=> /[dup] H. rewrite nth_error_repeat. + { rewrite -(repeat_length A_0R k1). apply /nth_error_Some. by rewrite H. } + move=> [] /(f_equal ty_size). rewrite ty_size_arrs /=. lia. + - move=> k2 IH k1 M HM. case /normal_form_nf: HM IH. + + move=> ? + IH /= /stlcE [] ?? [<- <-] /(IH (S k1)) H. + move=> /H [N] [->] ?. by eexists. + + move=> ? /neutralE' [x] [?] [->] _ _ /stlc_appsE [ss] [_] /stlcE. + move=> /[dup] H. rewrite nth_error_repeat. + { rewrite -(repeat_length A_0R k1). apply /nth_error_Some. by rewrite H. } + move=> [] /(f_equal ty_size). rewrite ty_size_arrs /=. lia. +Qed. + +Lemma solution_shape (M : term) : + normal_form M -> + (* correctly typed closed term *) + stlc [] M (arrs (repeat A_0R (length rules + 1) ++ [A; A_star; arr A A]) A) -> + steps (apps M (repeat F_R (length rules) ++ [F_0; var 0; F_star; (lam (var 0))])) (var 0) -> + steps (apps M (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])) (pi dollar) -> + exists N, M = lams (length rules + 4) N /\ ring1 1 N. +Proof. + move=> /(construct_initial_abstractions M 0 _) + /[dup] => /[apply]. + move=> [N] [->] HN. + change [A; A_star; arr A A] with ([A; A_star] ++ [arr A A]). + rewrite app_assoc -arrs_arrs. + have E: (length rules + 1 + 2) = length (repeat A_0R (length rules + 1) ++ [A; A_star]) by rewrite app_length repeat_length. + rewrite [in stlc _ _ _]E. + move=> /stlc_lamsE. rewrite repeat_app !rev_app_distr /= rev_repeat app_nil_r. + case /normal_form_nf: HN. + - move=> {}N HN /stlcE [] ?? [<- <-] + HFN HHN. + move: HN => /(construct_ring1 _ 1) + /[dup] H'N => /[apply]. + apply: unnest. + { apply: steps_var_elim HFN. + { rewrite (lams_lams _ 1). apply: stepsReds'. + by rewrite app_length repeat_length /=; lia. } + move=> /(steps_ren S). congr steps. + rewrite ren_subst_term /sigma_F !fold_left_app. + apply: ext_stlc_subst_term H'N=> - [|[|[|[|x]]]] /=; [done..|]. + move=> /nth_error_Some. rewrite repeat_length=> H. + rewrite fold_left_lt; first by (rewrite repeat_length; lia). + rewrite rev_repeat -(map_nth (ren S)) map_repeat ren_closed; first by auto with allfv. + apply: nth_indep. rewrite repeat_length. lia. } + apply: unnest. + { move: HHN. rewrite (lams_lams _ 1). apply: steps_pi_elim. + { apply: stepsReds'. rewrite app_length repeat_length /=. lia. } + congr steps. rewrite /sigma_H !fold_left_app. + apply: ext_stlc_subst_term H'N=> - [|[|[|[|x]]]] /=; [done..|]. + move=> /nth_error_Some. rewrite repeat_length=> H. + rewrite fold_left_lt; first by (rewrite repeat_length; lia). + rewrite rev_repeat. apply: nth_indep. rewrite repeat_length. lia. } + move=> ?. exists N. rewrite (lams_lams _ 1). split; last done. + congr (lams _ _). lia. + - (* typing contradiction *) + move=> ? /neutralE' [x] [Ms] [->] HMs /stlc_appsE [ss] [H'Ms] /stlcE. + move: x=> [|[|x]] /=. + + rewrite (arrs_arrs _ [_]). move=> [] /arrs_inj. + by move: (ss)=> [|?[|?[|??]]]. + + move=> [] /(f_equal ty_size). rewrite ty_size_arrs /=. lia. + + move=> /[dup] Hx. + have {}Hx: x < 1 + length rules. + { have /nth_error_Some: nth_error (repeat A_0R (1 + length rules)) x <> None by rewrite Hx. + by rewrite repeat_length. } + change (_ :: repeat A_0R ?k) with (repeat A_0R (S k)). + rewrite nth_error_repeat; first done. + rewrite (arrs_arrs _ [_]). move=> [] /arrs_inj. + by move: (ss)=> [|?[|?[|??]]]. +Qed. + +Lemma initial_applications i N : + i - 2 = 0 -> + stlc (Gamma_A 1) N A -> + steps (apps (lams (length rules + 4) N) (rev (map G_R rules) ++ [G_0; G_1; G_star; delta (match i with | 0 => bullet | 1 => zero | _ => one end)])) + (subst (sigma_G 1 i) N). +Proof. + move=> Hi H0M. + apply: rt_trans. + { apply: stepsReds'. by rewrite app_length rev_length map_length /=. } + rewrite fold_left_app. apply: steps_refl. + apply: ext_stlc_subst_term H0M. + have H : forall x k, + match x with + | S (S (S (S y))) => x < length (Gamma_A 1) -> + fold_left (fun sigma N => scons N sigma) (rev (map G_R rules)) var y = sigma_G 1 k x + | _ => True + end. + { move=> [|[|[|[|x]]]] k; [done..|]. + move=> Hx. + have H'x : x < length rules. + { rewrite length_Gamma_A in Hx. lia. } + rewrite fold_left_lt ?rev_involutive; first by rewrite rev_length map_length. + apply: nth_error_nth. rewrite nth_error_map. + move: (H'x) => /nth_error_Some. + case E: (nth_error rules x) => [rule|]; last done. + have ->: S (S (S (S x))) = x + 3 + 1 by lia. + by rewrite (sigma_G_rule _ _ x rule E). } + move: i Hi=> [|[|[|i]]] ? [|[|[|[|x]]]] /nth_error_Some; by [|apply: (H ((S (S (S (S x))))))]. +Qed. + +Lemma sigma_G_ring_1_elim m N : + ring1 m N -> + stlc (Gamma_A m) N A -> + steps (subst (sigma_G m 0) N) (pi dollar) -> + steps (subst (sigma_G m 1) N) (pi one) -> + Forall (fun i => steps (subst (sigma_G m (S (S i))) N) (pi zero)) (seq 0 m) -> + exists M k, ring2 (k + m) M /\ + stlc (Gamma_A (k + m)) M A /\ + steps (subst (sigma_G (k + m) 0) M) (pi one) /\ + steps (subst (sigma_G (k + m) 1) M) (pi zero) /\ + Forall (fun i => steps (subst (sigma_G (k + m) (S (S i))) M) (pi zero)) (seq 0 (k+m)). +Proof. + elim. + - move=> {}m {}N N' ? IH. + move=> /stlc_appsE [[|? [|? [|??]]]] [] /[dup] /Forall2_length; [done|done| |done]. + move=> _ /Forall2_cons_iff [HN'] /Forall2_cons_iff [HN] _. + move=> /stlcE. rewrite Gamma_A_space=> - [??]. subst. + move: (HN) => /stlcE [] ?? [<- <-] H'N. + rewrite !subst_apps /= !sigma_G_star. + move=> /steps_G_star_dollar_elim. + apply: unnest. + { move=> P. apply: stlc_closed. apply: stlc_subst_sigma_G HN'. } + apply: unnest. + { change (lam (subst _ N)) with (subst (sigma_G m 0) (lam N)). + apply: stlc_subst; first by eassumption. + by apply: stlc_sigma_G. } + move=> []. + have ->: subst (scons (delta zero) var) (subst (up (sigma_G m 0)) N) = subst (sigma_G (S m) 1) N. + { rewrite subst_subst_term. + apply: ext_stlc_subst_term H'N=> - [|?] /=; first done. + move=> /nth_error_Some. + rewrite subst_ren_term /= subst_var_term length_Gamma_A. + by move=> /sigma_G_S_shift ->. } + have ->: (subst (scons (delta bullet) var) (subst (up (sigma_G m 0)) N)) = subst (sigma_G (S m) 0) N. + { rewrite subst_subst_term. + apply: ext_stlc_subst_term H'N=> - [|?] /=; first done. + move=> /nth_error_Some. + rewrite subst_ren_term /= subst_var_term length_Gamma_A. + by move=> /sigma_G_0_shift ->. } + move=> /IH /[apply]. + apply: unnest. + { by move: HN => /stlcE [] ?? [<- <-]. } + move=> {}IH /steps_G_star_one_elim. + apply: unnest. + { move=> P. apply: allfv_subst. move: HN' => /stlc_allfv_not_None. apply: allfv_impl. + move=> ? /nth_error_Some. by apply: sigma_G_closed. } + apply: unnest. + { change (lam (subst _ N)) with (subst (sigma_G m 1) (lam N)). + apply: stlc_subst; first by eassumption. + by apply: stlc_sigma_G. } + have ->: (subst (scons (delta one) var) (subst (up (sigma_G m 1)) N)) = subst (sigma_G (S m) 2) N. + { rewrite subst_subst_term. apply: ext_stlc_subst_term H'N=> - [|?] /=; first done. + move=> /nth_error_Some. rewrite length_Gamma_A=> ?. + by rewrite subst_ren_term subst_var_term sigma_G_S_shift. } + move=> {}H''N H. + move: IH. apply: unnest. + { rewrite /= -seq_shift. constructor; first done. + apply /Forall_map. apply: Forall_impl H. + move=> i. rewrite sigma_G_star. + move=> /steps_G_star_zero_elim. + apply: unnest. + { move=> P. apply: allfv_subst. move: HN' => /stlc_allfv_not_None. apply: allfv_impl. + move=> ? /nth_error_Some. by apply: sigma_G_closed. } + apply: unnest. + { change (lam (subst _ N)) with (subst (sigma_G m (S (S i))) (lam N)). + apply: stlc_subst; first by eassumption. + by apply: stlc_sigma_G. } + congr steps. rewrite subst_subst_term. + apply: ext_stlc_subst_term H'N=> - [|?] /=; first done. + move=> /nth_error_Some. rewrite length_Gamma_A=> ?. + by rewrite subst_ren_term subst_var_term sigma_G_S_shift. } + move=> [M] [k] [?] [?] [?] [?] ?. + exists M, (S k). + have ->: S k + m = k + S m by lia. + by split; [|split; [|split; [|split]]]. + - move=> {}m {}N M HN /stlcE [] ? /stlcE [] ? /stlcE. + rewrite Gamma_A_init=> - [??] _ H'N. subst. + rewrite /= !sigma_G_init. + move: (H'N) => /stlc_subst_sigma_G H''N. + move: (H''N 0)=> /steps_G_0_dollar_elim /[apply] ?. + move: (H''N 1)=> /steps_G_0_one_elim /[apply] ?. + exists N, 0. do 4 (split; first done). + apply: Forall_impl H => - [|y] /=; rewrite sigma_G_init. + + by move: (H''N 2)=> /steps_G_0_zero_elim /[apply]. + + by move: (H''N (S (S (S y))))=> /steps_G_0_zero_elim /[apply]. +Qed. + +#[local] Arguments seq : simpl never. + +Lemma sigma_G_ring_2_elim v m M : + m > 0 -> + length v = S m -> + ring2 m M -> + stlc (Gamma_A m) M A -> + steps (subst (sigma_G m 0) M) (pi one) -> + Forall2 (fun i a => sym a < n /\ steps (subst (sigma_G m (S i)) M) (pi (sym a))) (seq 0 (S m)) v -> + SSTS.multi_step rules v (repeat 1 (S m)). +Proof. + move=> ++ H. elim: H v. + - move=> x y {}M ? IH Hx Hy v Hm Hv. + move=> /stlcE [] ? /stlcE [] ? /stlcE. + case E: (nth_error rules x) => [rule|]; first last. + { move: E=> /nth_error_None. lia. } + rewrite Gamma_A_rule; [lia..|]. + move=> [??] _ /=. subst. + move=> /[dup] /IH {}IH HM. + move: (E)=> /sigma_G_rule ->. + rewrite sigma_G_pos_0; first done. + move=> /steps_G_R_bullet_elim. + apply: unnest; first done. + apply: unnest. { by apply: stlc_subst_sigma_G. } + move=> /IH {}IH H. + have [u1 [a [b [u2 [??]]]]] : exists u1 a b u2, v = u1 ++ a :: b :: u2 /\ length u1 = y. + { have /(nth_split _ 0) : y < length v by lia. + move=> [u1] [[|b u2]]. + - move=> [/(f_equal (@length nat))]. rewrite app_length /=. lia. + - move=> [-> <-]. by exists u1, (nth (length u1) v 0), b, u2. } + subst v. move: (H). + move=> /Forall2_app_inv_r => - [l1] [l2] [] Hu1. + move: l2=> [|i1 [|i2 l2]] [] /[dup] /Forall2_length; [done..|]. + move=> [?] /Forall2_cons_iff [[_ Ha]] /Forall2_cons_iff [[_ Hb]] Hu2 H'v. + move: (Hu1) => /Forall2_length ?. + have ? : i1 = length u1. + { move: H'v => /(f_equal (fun (l : list nat) => nth_error l (length l1))). + rewrite nth_error_seq; first lia. + rewrite nth_error_app2; first done. + rewrite Nat.sub_diag /=. + by move=> [<-]. } + have ? : i2 = S i1. + { move: H'v => /(f_equal (fun (l : list nat) => nth_error l (S (length l1)))). + rewrite nth_error_seq; first lia. + rewrite nth_error_app2; first lia. + have ->: S (length l1) - length l1 = 1 by lia. + move=> [<-]. lia. } + subst. + (* left symbol transition *) + move: (E) Ha => /sigma_G_rule ->. + rewrite sigma_G_pos_S; first lia. + rewrite Nat.eqb_refl=> /steps_G_R_L_elim. + have ? : wf_rule rule by apply: (nth_error_wf_rule _ rule E). + apply: unnest; first done. + apply: unnest. { by apply: stlc_subst_sigma_G. } + move=> [?]. subst a. + (* right symbol transition *) + move: (E) Hb => /sigma_G_rule ->. + rewrite sigma_G_pos_S; first lia. + rewrite Nat.eqb_refl. + have /Nat.eqb_neq -> : S (length u1) <> length u1 by lia. + move=> /steps_G_R_R_elim. + apply: unnest; first done. + apply: unnest. { by apply: stlc_subst_sigma_G. } + move=> [?] Hd Hc. subst b. + move: (IH (u1 ++ fst (snd rule) :: snd (snd rule) :: u2) Hm). + apply: unnest. { move: Hv. by rewrite !app_length. } + apply: unnest. + { move: H. destruct m as [|m]; first by lia. + move: (E)=> /nth_error_wf_rule [????]. + apply: Forall2_change2; [done..|]. + move=> i y ? Hi H'i [?] H. split; first done. + move: (E) H => /sigma_G_rule ->. + rewrite sigma_G_pos_S; first lia. + move: Hi H'i => /Nat.eqb_neq -> /Nat.eqb_neq ->. + apply: steps_G_R_bullet_elim; first done. + by apply: stlc_subst_sigma_G. } + apply: rt_trans. apply: rt_step. constructor. + move: E=> /nth_error_In. + by move: (rule)=> [[??] [??]]. + - move=> x y {}M ? IH Hx Hy v Hm Hv. + move=> /stlcE [] ? /stlcE [] ? /stlcE. + case E: (nth_error rules x) => [rule|]; first last. + { move: E=> /nth_error_None. lia. } + rewrite Gamma_A_rule; [lia..|]. + move=> [??] _ /=. subst. + move=> /[dup] /IH {}IH HM. + move: (E)=> /sigma_G_rule ->. + rewrite sigma_G_pos_0; first done. + rewrite ren_delta; first done. + move=> /steps_G_R_bullet_elim'. + apply: unnest. + { move=> *. apply: rt_trans. + - move=> /=. by apply: stepsRed. + - apply: steps_refl. by rewrite /= subst_subst_term subst_delta. } + apply: unnest; first done. + apply: unnest. { by apply: stlc_subst_sigma_G. } + move=> /IH {}IH H. + have [u1 [a [b [u2 [??]]]]] : exists u1 a b u2, v = u1 ++ a :: b :: u2 /\ length u1 = y. + { have /(nth_split _ 0) : y < length v by lia. + move=> [u1] [[|b u2]]. + - move=> [/(f_equal (@length nat))]. rewrite app_length /=. lia. + - move=> [-> <-]. by exists u1, (nth (length u1) v 0), b, u2. } + subst v. move: (H). + move=> /Forall2_app_inv_r => - [l1] [l2] [] Hu1. + move: l2=> [|i1 [|i2 l2]] [] /[dup] /Forall2_length; [done..|]. + move=> [?] /Forall2_cons_iff [[_ Ha]] /Forall2_cons_iff [[_ Hb]] Hu2 H'v. + move: (Hu1) => /Forall2_length ?. + have ? : i1 = length u1. + { move: H'v => /(f_equal (fun (l : list nat) => nth_error l (length l1))). + rewrite nth_error_seq; first lia. + rewrite nth_error_app2; first done. + rewrite Nat.sub_diag /=. + by move=> [<-]. } + have ? : i2 = S i1. + { move: H'v => /(f_equal (fun (l : list nat) => nth_error l (S (length l1)))). + rewrite nth_error_seq; first lia. + rewrite nth_error_app2; first lia. + have ->: S (length l1) - length l1 = 1 by lia. + move=> [<-]. lia. } + subst. + (* left symbol transition *) + move: (E) Ha => /sigma_G_rule ->. + rewrite sigma_G_pos_S; first lia. + rewrite Nat.eqb_refl ren_delta; first done. + move=> /steps_G_R_L_elim'. + apply: unnest. + { move=> * /=. apply: rt_trans; first by apply: stepsRed. + apply steps_refl. by rewrite /= subst_subst_term subst_delta. } + have ? : wf_rule rule by apply: (nth_error_wf_rule _ rule E). + apply: unnest; first done. + apply: unnest. { by apply: stlc_subst_sigma_G. } + move=> [?]. subst a. + (* right symbol transition *) + move: (E) Hb => /sigma_G_rule ->. + rewrite sigma_G_pos_S; first lia. + rewrite Nat.eqb_refl. + have /Nat.eqb_neq -> : S (length u1) <> length u1 by lia. + rewrite ren_delta; first done. + move=> /steps_G_R_R_elim'. + apply: unnest. + { move=> * /=. apply: rt_trans; first by apply: stepsRed. + apply steps_refl. by rewrite /= subst_subst_term subst_delta. } + apply: unnest; first done. + apply: unnest. { by apply: stlc_subst_sigma_G. } + move=> [?] Hd Hc. subst b. + move: (IH (u1 ++ fst (snd rule) :: snd (snd rule) :: u2) Hm). + apply: unnest. { move: Hv. by rewrite !app_length. } + apply: unnest. + { move: H. destruct m as [|m]; first by lia. + move: (E)=> /nth_error_wf_rule [????]. + apply: Forall2_change2; [done..|]. + move=> i y ? Hi H'i [?] H. split; first done. + move: (E) H => /sigma_G_rule ->. + rewrite sigma_G_pos_S; first lia. + move: Hi H'i => /Nat.eqb_neq -> /Nat.eqb_neq ->. + rewrite ren_delta; first done. + apply: steps_G_R_bullet_elim'. + - move=> * /=. apply: rt_trans; first by apply: stepsRed. + apply steps_refl. by rewrite /= subst_subst_term subst_delta. + - done. + - by apply: stlc_subst_sigma_G. } + apply: rt_trans. apply: rt_step. constructor. + move: E=> /nth_error_In. + by move: (rule)=> [[??] [??]]. + - move=> v _ H1v _ _ H2v. + suff: v = (repeat 1 (S m)). + { move=> ->. by apply: rt_refl. } + elim: v m H1v H2v; first done. + move=> a v IH [|m] /= []. + + move: (v) => [|??]; last done. + move=> _ /Forall2_cons_iff [] [_]. rewrite sigma_G_fin. + move=> /steps_lamsE /normal_form_steps. + apply: unnest. { by constructor. } + by move=> [->]. + + rewrite /seq /= -/seq. + move=> /IH {}IH /Forall2_cons_iff [[_ Ha] Hv]. congr cons. + * move: Ha. rewrite sigma_G_fin. + move=> /steps_lamsE /normal_form_steps. + apply: unnest. { by constructor. } + by move=> [->]. + * apply: IH. move: Hv. + change (1 :: seq 2 m) with (seq 1 (S m)). + rewrite -seq_shift. + move=> /Forall2_map_l. apply: Forall2_impl. + move=> ??. by rewrite /= !sigma_G_fin. +Qed. + +Theorem soundness M : + stlc [] M (arrs (repeat A_0R (length rules + 1) ++ [A; A_star; arr A A]) A) -> + steps (apps M (repeat F_R (length rules) ++ [F_0; var 0; F_star; lam (var 0)])) (var 0) -> + steps (apps M (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])) (pi dollar) -> + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta bullet])) (pi dollar) -> + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta zero])) (pi one) -> + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta one])) (pi zero) -> + exists m, SSTS.multi_step rules (repeat 0 (S m)) (repeat 1 (S m)). +Proof. + move=> /[dup] /stlc_wn [N] /[dup] HMN /stepsAppsL H'MN H1N. + move: (HMN)=> /stlc_steps /[apply] H2N. + apply: steps_var_elim; first by apply: H'MN. + move=> /(solution_shape N H1N H2N) H. + apply: steps_pi_elim; first by apply: H'MN. + move=> /H - [N'] [?] HN'. subst N. + have {}H2N : stlc (Gamma_A 1) N' A. + { move: H2N => /stlc_lamsE'. + rewrite app_length repeat_length -Nat.add_assoc /=. + rewrite rev_app_distr rev_repeat /= app_nil_r (Nat.add_comm _ 1). + by apply. } + apply: steps_pi_elim; first by (apply: rt_trans; [apply: H'MN|apply: (initial_applications 0)]). + move=> ?. + apply: steps_pi_elim; first by (apply: rt_trans; [apply: H'MN|apply: (initial_applications 1)]). + move=> ?. + apply: steps_pi_elim; first by (apply: rt_trans; [apply: H'MN|apply: (initial_applications 2)]). + move=> ?. + move: HN' (H2N)=> /sigma_G_ring_1_elim /[apply]. + do 2 (apply: unnest; first done). + apply: unnest; first by constructor. + move=> [M'] [m] [?] [?] [?] [?] {}H. exists (m + 1). + apply: (sigma_G_ring_2_elim _ (m + 1) M'); [lia|by rewrite repeat_length|done..|]. + rewrite /seq /= -/seq. constructor; first done. + apply: Forall2_repeat_r'; last by rewrite seq_length. + rewrite -seq_shift. apply /Forall_map. + by apply: Forall_impl H. +Qed. + +(* Correctness : + given a simple semi-Thue system, + if 0..0 rewrites to 1..1, + then the constructed higher-order matching instance is solvable *) + +(* expand tape to proper length *) +Fixpoint expand_tape m M := + match m with + | 0 => M + | S m => expand_tape m (apps (var (S m)) [var 0; lam M]) + end. + +(* initialize tape with zeros *) +Definition init_tape m M := app (app (var (3 + m)) (var 0)) M. + +Lemma stlc_expand_tape m N : stlc (Gamma_A (S m)) N A -> stlc (Gamma_A 1) (expand_tape m N) A. +Proof. + elim: m N; first done. + move=> m IH N ? /=. apply: IH. + apply: stlc_app; [apply: stlc_app|]. + - apply: stlc_var. by apply: Gamma_A_space. + - by apply: stlc_var. + - by apply: stlc_lam. +Qed. + +Lemma stlc_init_tape m N : stlc (Gamma_A (S m)) N A -> stlc (Gamma_A (S m)) (init_tape m N) A. +Proof. + move=> ?. rewrite /init_tape. + apply: stlc_app; [apply: stlc_app|]. + - apply: stlc_var. by apply: Gamma_A_init. + - by apply: stlc_var. + - done. +Qed. + +Lemma steps_sigma_F_expand_tape m M : stlc (Gamma_A (S m)) M A -> steps (subst (sigma_F (S m)) M) (var (S m)) -> + steps (subst (scons (lam (var 0)) var) (subst (up (sigma_F 0)) (expand_tape m M))) (var 0). +Proof. + move=> HM. + have -> : subst (sigma_F (S m)) M = ren S (subst (scons (lam (var 0)) var) (subst (up (sigma_F m)) M)). + { rewrite ren_subst_term subst_subst_term. + apply: ext_stlc_subst_term HM=> - [|?] /=; first done. + move=> /nth_error_Some ?. + by rewrite subst_ren_term /= -ren_as_subst_term -ren_S_sigma_F. } + move=> /(steps_ren Nat.pred). rewrite ren_ren_term ren_id_term /=. + elim: m M HM; first done. + - move=> m IH M HM H'M. apply: IH. + { apply: stlc_apps. + - apply: stlc_var. by apply: Gamma_A_space. + - constructor; [|constructor; [|constructor]]. + + by apply: stlc_var. + + by apply: stlc_lam. } + rewrite subst_apps /= subst_ren_term subst_var_term sigma_F_space. + apply: rt_trans; first by apply: steps_F_star. + apply: rt_trans; first by apply: stepsRed. + rewrite !subst_subst_term/=. + move: H'M => /(steps_ren Nat.pred). congr steps. + rewrite ren_subst_term subst_subst_term/=. + apply: ext_stlc_subst_term HM=> - [|[|?]] /=; [done..|]. + move=> /nth_error_Some ?. + rewrite !subst_ren_term -ren_S_sigma_F; first done. + by rewrite subst_ren_term. +Qed. + +Lemma steps_sigma_F_init_tape m M : steps (subst (sigma_F (S m)) M) (var (S m)) -> steps (subst (sigma_F (S m)) (init_tape m M)) (var (S m)). +Proof. + move=> H. rewrite /init_tape /= sigma_F_init. + by apply: rt_trans; first apply: steps_F_0. +Qed. + +(* any ring 1 term which is properly typed reduces to the desired variable wrt. the shape constraint *) +Lemma ring2_steps_sigma_G m (M N : term) : + M = lams (length rules + 4) (expand_tape m (init_tape m N)) -> + ring2 (S m) N -> + (* correctly typed closed term *) + stlc (Gamma_A (S m)) N A -> + (* Loader equation *) + steps (apps M (repeat F_R (length rules) ++ [F_0; var 0; F_star; (lam (var 0))])) (var 0). +Proof. + move=> -> HN /[dup] H' /stlc_init_tape /stlc_expand_tape H. + apply: rt_trans. + { apply: stepsReds'. by rewrite app_length repeat_length /=. } + apply: rt_trans; first last. + { move: (H') => /stlc_init_tape /steps_sigma_F_expand_tape. apply. + apply: steps_sigma_F_init_tape. + move: (S m) HN H' {H}=> {}m. elim. + - move=> > ? IH ?? /stlcE [] ? /stlcE [] ? /stlcE + _. + rewrite Gamma_A_rule; [lia..|]. + move=> [_ <-] ?. + rewrite /= sigma_F_rule; [rewrite ?length_Gamma_A; lia..|]. + rewrite sigma_F_pos; first done. + apply: rt_trans; first by apply: steps_F_R. + apply: rt_trans; first by apply: stepsRed. + by apply: IH. + - move=> > ? IH ?? /stlcE [] ? /stlcE [] ? /stlcE + _. + rewrite Gamma_A_rule; [lia..|]. + move=> [_ <-] ?. + rewrite /= sigma_F_rule; [rewrite ?length_Gamma_A; lia..|]. + apply: rt_trans; first by apply: steps_F_R. + rewrite /= sigma_F_pos; first done. + apply: rt_trans; first by apply: stepsRed. + apply: rt_trans. + { rewrite /=. by apply: stepsRed. } + by apply: IH. + - move=> _. rewrite /= sigma_F_fin. by apply: rt_refl. } + apply: steps_refl. + rewrite /sigma_F. rewrite fold_left_app subst_subst_term. + apply: ext_stlc_subst_term H=> - [|[|[|[|x]]]] /= Hx; [done..|]. + have ? : x < length (repeat F_R (length rules)). + { move: Hx=> /nth_error_Some. by rewrite !repeat_length. } + rewrite fold_left_lt; first done. + rewrite rev_repeat subst_ren_term /= subst_var_term. + by apply: nth_indep. +Qed. + +Lemma steps_sigma_H_expand_tape m M : stlc (Gamma_A (S m)) M A -> steps (subst (sigma_H (S m)) M) (pi dollar)-> + steps (subst (sigma_H 1) (expand_tape m M)) (pi dollar). +Proof. + elim: m M; first done. + move=> m IH M HM H'M. apply: IH. + { apply: stlc_apps. + - apply: stlc_var. by apply: Gamma_A_space. + - constructor; [|constructor; [|constructor]]. + + by apply: stlc_var. + + by apply: stlc_lam. } + rewrite subst_apps /= sigma_H_space sigma_H_pos; first by lia. + apply: rt_trans; first by apply: steps_H_star. + apply: stepsLams. + apply: rt_trans. + { rewrite /=. apply: stepsAppsL. by apply: stepsRed. } + rewrite subst_ren_term subst_subst_term/=. + apply: rt_trans. + { apply: stepsAppsL. move: H'M. congr steps. + apply: ext_stlc_subst_term HM=> - [|?] /=; first done. + move=> /nth_error_Some /= ?. rewrite ren_S_sigma_H; first done. + rewrite subst_closed; last done. + apply: allfv_closed. apply: sigma_H_closed. rewrite /=. lia. } + by apply: steps_pi_eq. +Qed. + +Lemma steps_sigma_H_init_tape m M : steps (subst (sigma_H (S m)) M) (pi one) -> + steps (subst (sigma_H (S m)) (init_tape m M)) (pi dollar). +Proof. + move=> H. rewrite /init_tape /= sigma_H_init. + apply: rt_trans; first by apply: steps_H_0. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. +Qed. + +(* any well-typed ring1 solution reduces correctly wrt. second shape constraint *) +Lemma ring2_steps_sigma_H m (M N : term) : + M = lams (length rules + 4) (expand_tape m (init_tape m N)) -> + ring2 (S m) N -> + (* correctly typed closed term *) + stlc (Gamma_A (S m)) N A -> + (* Dudenhefner equation *) + steps (apps M (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])) (pi dollar). +Proof. + move=> -> HN /[dup] H' /stlc_init_tape /stlc_expand_tape H. + apply: rt_trans. + { apply: stepsReds'. by rewrite app_length repeat_length. } + apply: rt_trans; first last. + { move: (H') => /stlc_init_tape /steps_sigma_H_expand_tape. apply. + apply: steps_sigma_H_init_tape. + move: (S m) HN H' {H}=> {}m. elim. + - move=> > ? IH ?? /stlcE [] ? /stlcE [] ? /stlcE + _. + rewrite Gamma_A_rule; [lia..|]. + move=> [_ <-] H. + rewrite /= sigma_H_rule; [rewrite ?length_Gamma_A; lia..|]. + rewrite sigma_H_pos; first done. + apply: rt_trans; first by apply: steps_H_R. + apply: stepsLams. apply: rt_trans. + { rewrite /= ren_delta; first done. by apply: steps_delta_eq. } + apply: rt_trans; first by apply: steps_pi_eq. + rewrite ren_closed. + { apply: allfv_closed. apply: subst_sigma_H_closed. by eassumption. } + apply: rt_trans. + { apply: stepsAppsL. by apply: IH. } + by apply: steps_pi_eq. + - move=> > ? IH ?? /stlcE [] ? /stlcE [] ? /stlcE + _. + rewrite Gamma_A_rule; [lia..|]. + move=> [_ <-] H. + rewrite /= sigma_H_rule; [rewrite ?length_Gamma_A; lia..|]. + apply: rt_trans; first by apply: steps_H_R. + apply: stepsLams. rewrite /= sigma_H_pos; first done. + apply: rt_trans. + { apply: stepsAppsL. by apply: stepsRed. } + apply: rt_trans. + { rewrite /= !subst_ren_term subst_delta; first done. by apply: steps_delta_eq. } + apply: rt_trans; first by apply: steps_pi_eq. + rewrite ren_closed. + { apply: allfv_closed. apply: subst_sigma_H_closed. by eassumption. } + apply: rt_trans. + { apply: stepsAppsL. by apply: IH. } + by apply: steps_pi_eq. + - move=> _. rewrite /= sigma_H_fin. by apply: rt_refl. } + apply: steps_refl. rewrite fold_left_app /sigma_H. + apply: ext_stlc_subst_term H=> - [|[|[|[|x]]]] /= Hx; [done..|]. + have ? : x < length (repeat H_R (length rules)). + { move: Hx=> /nth_error_Some. by rewrite !repeat_length. } + rewrite fold_left_lt; first done. + rewrite rev_repeat. by apply: nth_indep. +Qed. + +Lemma ring2_allfv m M : ring2 m M -> allfv (fun x => x < m + 3 + length rules) M. +Proof. + elim=> * /=. + - split; last done. lia. + - split; last done. lia. + - lia. +Qed. + +Lemma ssts_simulate_rewrite m v : + SSTS.multi_step rules v (repeat 1 (S (S m))) -> + exists M, ring2 (S m) M /\ + stlc (Gamma_A (S m)) M A /\ + steps (subst (sigma_G (S m) 0) M) (pi one) /\ + Forall2 (fun i a => sym a < n /\ steps (subst (sigma_G (S m) (S i)) M) (pi (sym a))) (seq 0 (S (S m))) v. +Proof. + move E: (repeat 1 (S (S m))) => w /clos_rt_rt1n_iff H. + elim: H E. + { move=> ? <-. exists (var (S (S m))). split; [|split; [|split]]. + - by constructor. + - constructor. by rewrite Gamma_A_fin. + - rewrite /= sigma_G_fin. by apply: rt_refl. + - apply: Forall2_repeat_r'; last by rewrite seq_length. + apply /Forall_forall=> ? /in_seq ?. split; first done. + rewrite /= sigma_G_fin. by apply: rt_refl. } + move=> > [] u1 u2 > /(In_nth_error rules) [x] Hx. + move=> _ /[apply] - [M] [H1M] [H0M] [H2M H3M]. + exists (app (app (var (x + 3 + (S m))) (var (length u1))) M). + have ? : length u1 < S m. + { move: H3M => /Forall2_length. rewrite app_length /= seq_length. lia. } + have ? : x < length rules by (apply /nth_error_Some; rewrite Hx). + split; [|split; [|split]]. + - by constructor. + - apply: stlc_app; [apply: stlc_app; apply: stlc_var|]. + + rewrite Gamma_A_rule; by [|lia]. + + by rewrite Gamma_A_pos. + + done. + - rewrite /=. move: (Hx)=> /sigma_G_rule ->. + rewrite sigma_G_pos_0; first done. + apply: rt_trans; first by apply: steps_G_R_bullet. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_full. + - move: (Hx) => /nth_error_In. + move: (wf_rules) => /Forall_forall /[apply] /[dup] H_rule [????]. + apply: Forall2_change2 H3M. + + move=> [_ H3M]. split; first done. + rewrite /=. move: (Hx)=> /sigma_G_rule ->. + rewrite sigma_G_pos_S; first done. + rewrite Nat.eqb_refl. + apply: rt_trans; first by apply: steps_G_R_L. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. + + move=> [_ H3M]. split; first done. + rewrite /=. move: (Hx)=> /sigma_G_rule ->. + rewrite sigma_G_pos_S; first done. + rewrite Nat.eqb_refl. + have /Nat.eqb_neq -> : S (length u1) <> length u1 by lia. + apply: rt_trans; first by apply: steps_G_R_R. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_eq. + + move=> y a H1y H2y H3y [? ?]. split; first done. + rewrite /=. move: (Hx)=> /sigma_G_rule ->. + rewrite sigma_G_pos_S; first done. + move: H2y H3y => /Nat.eqb_neq -> /Nat.eqb_neq ->. + apply: rt_trans; first by apply: steps_G_R_bullet. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. + by apply: steps_pi_full. +Qed. + +Lemma ssts_to_sigma_G_steps m : + SSTS.multi_step rules (repeat 0 (S (S m))) (repeat 1 (S (S m))) -> + exists N : term, ring2 (S m) N /\ + stlc (Gamma_A (S m)) N A /\ + steps (subst (sigma_G 1 0) (expand_tape m (init_tape m N))) (pi dollar) /\ + steps (subst (sigma_G 1 1) (expand_tape m (init_tape m N))) (pi one) /\ + steps (subst (sigma_G 1 2) (expand_tape m (init_tape m N))) (pi zero). +Proof. + move=> H_ssts. + (* verify tape expansion *) + suff: exists N, ring2 (S m) N /\ + stlc (Gamma_A (S m)) N A /\ + steps (subst (sigma_G (S m) 0) (init_tape m N)) (pi dollar) /\ + steps (subst (sigma_G (S m) 1) (init_tape m N)) (pi one) /\ + Forall (fun i => steps (subst (sigma_G (S m) (S (S i))) (init_tape m N)) (pi zero)) (seq 0 (S m)). + { move=> [N] [HN] [H0N] [H1N] [H2N H3N]. exists N. split; [|split]; [done..|]. + have : allfv (fun x => x <= m + 3 + length rules) (init_tape m N). + { rewrite /=. split; first lia. move: HN => /ring2_allfv. + apply: allfv_impl. lia. } + elim: m (init_tape m N) {H0N} H1N H2N H3N {HN H_ssts}. + { by move=> > ?? /Forall_cons_iff []. } + move=> m IH {}N H1N H2N H3N HN /=. apply: IH. + - rewrite /= sigma_G_star (sigma_G_pos_0 _ 0); first lia. + apply: steps_G_star_dollar. + + by apply: rt_refl. + + move: H1N. congr steps. + rewrite subst_subst_term. apply: ext_allfv_subst_term. apply: allfv_impl HN. + move=> [|x] /= ?; first done. + rewrite subst_ren_term /= subst_var_term. + apply: sigma_G_0_shift. lia. + + move: H2N. congr steps. + rewrite subst_subst_term. apply: ext_allfv_subst_term. apply: allfv_impl HN. + move=> [|x] /= ?; first done. + rewrite subst_ren_term /= subst_var_term. + apply: sigma_G_S_shift. lia. + - rewrite /= sigma_G_star (sigma_G_pos_S _ 0) /=; first lia. + apply: steps_G_star_one. + + by apply: rt_refl. + + move: H3N => /= /Forall_cons_iff [+ _]. congr steps. + rewrite subst_subst_term. apply: ext_allfv_subst_term. apply: allfv_impl HN. + move=> [|x] /= ?; first done. + rewrite subst_ren_term /= subst_var_term. + apply: sigma_G_S_shift. lia. + - apply /Forall_forall=> - [|x]. + + move=> _. rewrite /= sigma_G_star sigma_G_pos_S /=; first lia. + apply: steps_G_star_R_zero. + * by apply: rt_refl. + * move: H3N => /= /Forall_cons_iff [_] /Forall_cons_iff [+ _]. congr steps. + rewrite subst_subst_term. apply: ext_allfv_subst_term. apply: allfv_impl HN. + move=> [|x] /= ?; first done. + rewrite subst_ren_term /= subst_var_term. + apply: sigma_G_S_shift. lia. + + move=> /in_seq ?. + rewrite /= sigma_G_star sigma_G_pos_S /=; first lia. + apply: steps_G_star_bullet_zero. + * by apply: rt_refl. + * move: H3N => /Forall_forall /(_ (S (S x))). + apply: unnest. { apply /in_seq. lia. } + congr steps. + rewrite /= subst_subst_term. apply: ext_allfv_subst_term. apply: allfv_impl HN. + move=> [|y] /= ?; first done. + rewrite subst_ren_term /= subst_var_term. + apply: sigma_G_S_shift. lia. + - rewrite /=. split; [split|]; [lia..|]. + apply: allfv_impl HN=> - [|x] /=; by [|lia]. } + (* init tape *) + suff: exists N : term, ring2 (S m) N /\ + stlc (Gamma_A (S m)) N A /\ + steps (subst (sigma_G (S m) 0) N) (pi one) /\ + Forall (fun i : nat => steps (subst (sigma_G (S m) (S i)) N) (pi zero)) (seq 0 (S (S m))). + { move=> [N] [HN] [H0N] [H1N H2N]. exists N. split; [|split]; [done..|]. + rewrite /init_tape /=. split; [|split]. + - rewrite sigma_G_init sigma_G_pos_0; first lia. + apply: rt_trans; first by apply: steps_G_0_bullet. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + apply: rt_trans. + { rewrite ren_pi; first done. by apply: steps_pi_neq. } + apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. by apply: steps_pi_eq. + - rewrite sigma_G_init sigma_G_pos_S /=; first lia. + apply: rt_trans; first by apply: steps_G_0_L. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. move: H2N => /Forall_cons_iff [+ _]. by apply. } + rewrite ren_pi; first done. by apply: steps_pi_eq. + - move: H2N => /= /Forall_cons_iff [_]. + have ->: 1 :: seq 2 m = map S (seq 0 (S m)) by rewrite /= seq_shift. + move=> /Forall_map. + apply: Forall_Forall_impl. + apply /Forall_forall => - [|x] /in_seq ? H3N. + + rewrite sigma_G_init sigma_G_pos_S /=; first lia. + apply: rt_trans; first by apply: steps_G_0_R. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. by apply: steps_pi_eq. + + rewrite sigma_G_init sigma_G_pos_S /=; first lia. + apply: rt_trans; first by apply: steps_G_0_bullet. + apply: stepsLams. apply: rt_trans. + { apply: stepsAppsL. apply: steps_ren. by eassumption. } + rewrite ren_pi; first done. by apply: steps_pi_eq. } + (* actual tape operations *) + move: H_ssts => /ssts_simulate_rewrite [N] [?] [? [? /Forall2_repeat_r HN]]. + exists N. split; [|split; [|split]]; [done..|]. + apply: Forall_impl HN. by move=> ? []. +Qed. + +(* if ssrs rewrites zeroes to ones, then there is a solution of the higher-order matching problem *) +Theorem completeness m : + SSTS.multi_step rules (repeat 0 (S m)) (repeat 1 (S m)) -> + exists M, + stlc [] M (arrs (repeat A_0R (length rules + 1) ++ [A; A_star; arr A A]) A) /\ + steps (apps M (repeat F_R (length rules) ++ [F_0; var 0; F_star; lam (var 0)])) (var 0) /\ + steps (apps M (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])) (pi dollar) /\ + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta bullet])) (pi dollar) /\ + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta zero])) (pi one) /\ + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta one])) (pi zero). +Proof. + case: m => [|m]. + { (* impossible to rewrite 0 to 1 *) + move=> H. + suff: forall v w, SSTS.multi_step rules v w -> v = w \/ length v > 1. + { move=> /(_ _ _ H) /=. case; by [|lia]. } + move=> ??. elim. + - move=> > [] *. right. rewrite app_length /=. lia. + - move=> ?. by left. + - by move=> > _ [<-|?] _ [<-|?]; tauto. } + move=> /ssts_to_sigma_G_steps [M] [HM] [H0M] [H1M [H2M H3M]]. + exists (lams (length rules + 4) (expand_tape m (init_tape m M))). + have H'0M : stlc (Gamma_A 1) (expand_tape m (init_tape m M)) A. + { apply: stlc_expand_tape. by apply: stlc_init_tape. } + split; [|split; [|split]]. + - apply: stlc_lams. + + rewrite app_length repeat_length /=. lia. + + move: H'0M. congr stlc. + by rewrite /Gamma_A app_nil_r rev_app_distr rev_repeat (Nat.add_comm 1). + - by apply: ring2_steps_sigma_G. + - by apply: ring2_steps_sigma_H. + - split; [|split]. + + apply: rt_trans; last by eassumption. + by apply: (initial_applications 0). + + apply: rt_trans; last by eassumption. + by apply: (initial_applications 1). + + apply: rt_trans; last by eassumption. + by apply: (initial_applications 2). +Qed. + +(* combination of soundness and completeness theorems *) +Lemma correctness : SSTS.SSTS01 rules <-> + (exists M, + stlc [] M (arrs (repeat A_0R (length rules + 1) ++ [A; A_star; arr A A]) A) /\ + steps (apps M (repeat F_R (length rules) ++ [F_0; var 0; F_star; lam (var 0)])) (var 0) /\ + steps (apps M (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])) (pi dollar) /\ + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta bullet])) (pi dollar) /\ + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta zero])) (pi one) /\ + steps (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta one])) (pi zero)). +Proof. + split. + - by move=> [m] /completeness. + - move=> [M] ?. by apply: (soundness M); tauto. +Qed. + +Definition HOM_A := (arrs (repeat A_0R (length rules + 1) ++ [A; A_star; arr A A]) A). +Definition HOM_B := arr (arrs [arr A A; A; A; A; A] atom) atom. +Definition HOM_f := lam (lam (apps (var 0) [ + (lam (apps (var 2) (repeat F_R (length rules) ++ [F_0; var 0; F_star; lam (var 0)]))); + (apps (var 1) (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])); + (apps (var 1) (rev (map G_R rules) ++ [G_0; G_1; G_star; delta bullet])); + (apps (var 1) (rev (map G_R rules) ++ [G_0; G_1; G_star; delta zero])); + (apps (var 1) (rev (map G_R rules) ++ [G_0; G_1; G_star; delta one]))])). +Definition HOM_b := lam (apps (var 0) [lam (var 0); pi dollar; pi dollar; pi one; pi zero]). + +Lemma stlc_HOM_f : stlc [] HOM_f (arr HOM_A HOM_B). +Proof. + rewrite /HOM_f /HOM_A /HOM_B. + apply: stlc_lam. apply: stlc_lam. + apply: stlc_apps; first by apply: stlc_var. + constructor; [|constructor; [|constructor; [|constructor; [|constructor; [|constructor]]]]]. + - apply: stlc_lam. apply: stlc_apps; first by apply: stlc_var. + rewrite repeat_app -app_assoc /=. + apply: Forall2_app. + + apply: Forall2_repeat. by apply: stlc_F_R. + + by auto 7 with stlc. + - apply: stlc_apps; first by apply: stlc_var. + rewrite repeat_app -app_assoc /=. apply: Forall2_app. + + apply: Forall2_repeat. by apply: stlc_H_R. + + by auto 6 with stlc. + - apply: stlc_apps; first by apply: stlc_var. + rewrite repeat_app -app_assoc /=. apply: Forall2_app. + + apply: Forall2_repeat_r'; last by rewrite rev_length map_length. + apply /Forall_rev /Forall_map. apply: Forall_impl (wf_rules). + move=> ?. by apply: stlc_G_rule. + + by auto 6 with stlc. + - apply: stlc_apps; first by apply: stlc_var. + rewrite repeat_app -app_assoc /=. apply: Forall2_app. + + apply: Forall2_repeat_r'; last by rewrite rev_length map_length. + apply /Forall_rev /Forall_map. apply: Forall_impl (wf_rules). + move=> ?. by apply: stlc_G_rule. + + by auto 6 with stlc. + - apply: stlc_apps; first by apply: stlc_var. + rewrite repeat_app -app_assoc /=. apply: Forall2_app. + + apply: Forall2_repeat_r'; last by rewrite rev_length map_length. + apply /Forall_rev /Forall_map. apply: Forall_impl (wf_rules). + move=> ?. by apply: stlc_G_rule. + + by auto 6 with stlc. +Qed. + +Lemma stlc_HOM_b : stlc [] HOM_b HOM_B. +Proof. + rewrite /HOM_b /HOM_B. apply: stlc_lam. apply: stlc_apps. + - by apply: stlc_var. + - constructor; [|constructor; [|constructor; [|constructor; [|constructor; [|constructor]]]]]; [|by apply: stlc_pi..]. + apply: stlc_lam. by apply: stlc_var. +Qed. + +Definition HOM_inst : { '(A, B, f, b) : (ty * ty * term * term) | stlc nil f (arr A B) /\ stlc nil b B } := + exist _ (HOM_A, HOM_B, HOM_f, HOM_b) (conj stlc_HOM_f stlc_HOM_b). + +Lemma nf_HOM_b : normal_form HOM_b. +Proof. do ? constructor; by apply normal_form_pi. Qed. + +Lemma steps_HOM_f M : stlc [] M HOM_A -> steps (app HOM_f M) + (lam (apps (var 0) [ + (lam (apps M (repeat F_R (length rules) ++ [F_0; var 0; F_star; lam (var 0)]))); + (apps M (repeat H_R (length rules) ++ [H_0; H_1; H_star; delta bullet])); + (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta bullet])); + (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta zero])); + (apps M (rev (map G_R rules) ++ [G_0; G_1; G_star; delta one]))])). +Proof. + move=> HM. + have ren_M : forall xi, ren xi M = M. + { move=> xi. move: HM => /stlc_closed ?. + rewrite ren_closed; last done. by apply: allfv_closed. } + rewrite /HOM_f. apply: rt_trans; first by apply: stepsRed. + rewrite subst_lam subst_apps. apply: stepsLam. apply: steps_refl. + congr (apps _ _). rewrite /= !subst_apps /= !ren_M. + move=> [: H]. congr ([_; _; _; _; _]). + - by rewrite map_app map_repeat. + - rewrite map_app map_repeat /= !subst_closed; auto with allfv. + - rewrite map_app. congr (apps _ _). congr (_ ++ _). + + abstract: H. + rewrite map_rev map_map. congr rev. apply: map_ext_Forall. + apply: Forall_impl (wf_rules)=> ??. + rewrite subst_closed; auto with allfv. + + by rewrite /= !subst_closed; auto with allfv. + - rewrite map_app H. by rewrite /= !subst_closed; auto with allfv. + - rewrite map_app H. by rewrite /= !subst_closed; auto with allfv. +Qed. + +Lemma eq_beta_normal_form_elim (P : Prop) M M' N : normal_form N -> steps M M' -> (steps M' N -> P) -> clos_refl_sym_trans term step M N -> P. +Proof. + move=> HN HMM' + /clos_rst_rst1n_iff HMN. apply. + elim: HMN M' HN HMM'. + - move=> > /normal_form_steps /[apply] ->. by apply: rt_refl. + - move=> > []. + + move=> + _ IH ? /IH {}IH. + move=> /(@rt_step term) /confluence_step /[apply] - [?] [/IH] *. + apply: rt_trans; by eassumption. + + move=> + _ IH ? /IH {}IH. + move=> /(@rt_step term) *. apply: IH. + apply: rt_trans; by eassumption. +Qed. + +End Argument. + +Require Import Undecidability.Synthetic.Definitions. +Import SSTS (SSTS01). + +(* Reduction from: Simple semi-Thue system 01 rewriting (SSTS01) + to: Higher-Order Matching wrt. beta-equivalence (HOMbeta) *) +Theorem reduction : SSTS01 ⪯ HOMbeta. +Proof. + exists @HOM_inst. split. + - move=> /correctness [M] [H1M] [H2M] [H3M] [H4M] [H5M] H6M. + exists M. split; first done. + apply: clos_rt_clos_rst. + apply: rt_trans; first by apply: steps_HOM_f. + rewrite /HOM_b. apply: stepsLam. apply: stepsAppsR. + constructor; [|constructor; [|constructor; [|constructor; [|constructor; [|constructor]]]]]; [|done..]. + by apply: stepsLam. + - move=> [M] [H1M H2M]. apply /correctness. + exists M. split; first done. + apply: eq_beta_normal_form_elim H2M. + + by apply: nf_HOM_b. + + by apply: steps_HOM_f. + + rewrite /HOM_b. move=> /steps_lamE /steps_apps_varE. + move=> /Forall2_cons_iff [/steps_lamE ?]. + do 4 (move=> /Forall2_cons_iff [?]). tauto. +Qed. diff --git a/theories/LambdaCalculus/Util/confluence.v b/theories/LambdaCalculus/Util/confluence.v new file mode 100644 index 000000000..2a8874d6a --- /dev/null +++ b/theories/LambdaCalculus/Util/confluence.v @@ -0,0 +1,152 @@ +Require Import Relations PeanoNat. + +Require Undecidability.L.L. +Import L (term, var, app, lam). + +From Undecidability.LambdaCalculus Require Import Lambda Util.facts. + +#[local] Unset Implicit Arguments. + +Set Default Goal Selector "!". + +Section Basics. + Context {X : Type}. + Definition joinable (R : X -> X -> Prop) x y := exists z, R x z /\ R y z. + Definition diamond (R : X -> X -> Prop) := forall x y z, R x y -> R x z -> joinable R y z. + Definition confluent (R : X -> X -> Prop) := diamond (clos_refl_trans X R). + Definition reflexive (R : X -> X -> Prop) := forall x, R x x. + Definition semi_confluent R := forall x y z, R x y -> clos_refl_trans X R x z -> joinable (clos_refl_trans X R) y z. + Notation "R <<= S" := (inclusion _ R S) (at level 70). + Notation "R === S" := (R <<= S /\ S <<= R) (at level 70). + + Fact inclusion_mono R S : R <<= S -> + clos_refl_trans X R <<= clos_refl_trans X S. + Proof. + intros H x y H'. induction H'. + - now apply rt_step, H. + - apply rt_refl. + - eapply rt_trans; eassumption. + Qed. + + Fact diamond_semi_confluent R : + diamond R -> semi_confluent R. + Proof. + intros H x y1 y2 H1 H2 % clos_rt_rt1n_iff. revert y1 H1. + induction H2 as [x|x x' y2 H2 _ IH]; intros y1 H1. + - exists y1; eauto using clos_refl_trans. + - assert (joinable R y1 x') as [z [H3 H4]]. + { eapply H; eauto. } + assert (joinable (clos_refl_trans _ R) z y2) as [u [H5 H6]]. + { apply IH; auto. } + exists u; eauto using clos_refl_trans. + Qed. + + Fact confluent_semi R : + confluent R <-> semi_confluent R. + Proof. + split. + - intros H x y1 y2 H1 H2. + eapply H; [|exact H2]. eauto using clos_refl_trans. + - intros H x y1 y2 H1 % clos_rt_rt1n_iff H2. revert y2 H2. + induction H1 as [x|x x' y1 H1 _ IH]; intros y2 H2. + + exists y2; eauto using clos_refl_trans. + + assert (joinable (clos_refl_trans _ R) x' y2) as [z [H3 H4]]. + { eapply H; eauto. } + assert (joinable (clos_refl_trans _ R) y1 z) as [u [H5 H6]]. + { apply IH; auto. } + exists u; eauto using clos_refl_trans. + Qed. + + Fact diamond_confluent R : + diamond R -> confluent R. + Proof. + intros H. + apply confluent_semi, diamond_semi_confluent, H. + Qed. + + Fact diamond_ext R S: + R === S -> diamond S -> diamond R. + Proof. + intros H1 H2 x y z H3 H4. + assert (joinable S y z); firstorder. + Qed. +End Basics. + + +Section Takahashi. + Variables (X: Type) (R: X -> X -> Prop). + Implicit Types (x y z : X). + Notation "x > y" := (R x y) (at level 70). + Notation "x >* y" := (clos_refl_trans X R x y) (at level 60). + + Definition tak_fun rho := forall x y, x > y -> y > rho x. + + Variables (rho: X -> X) (tak: tak_fun rho). + + Fact tak_diamond : + diamond R. + Proof using tak rho. + intros x y z H1 % tak H2 % tak. now exists (rho x). + Qed. + + Fact tak_sound x : + reflexive R -> x > rho x. + Proof using tak. + intros H. apply tak, H. + Qed. + + Fact tak_mono x y : + x > y -> rho x > rho y. + Proof using tak. + intros H % tak % tak. exact H. + Qed. + + Fact tak_mono_n x y n : + x > y -> Nat.iter n rho x > Nat.iter n rho y. + Proof using tak. + intros H. induction n; cbn; auto using tak_mono. + Qed. + + Fact tak_cofinal x y : + x >* y -> exists n, y >* Nat.iter n rho x. + Proof using tak. + intros H % clos_rt_rt1n_iff. induction H as [x|x z y H _ [n IH]]. + - exists 0. apply rt_refl. + - exists (S n). eapply rt_trans. + + eassumption. + + rewrite Nat.iter_succ_r. apply rt_step. now apply tak_mono_n, tak. + Qed. + +End Takahashi. + +Section TMT. + Notation "R <<= S" := (inclusion _ R S) (at level 70). + Notation "R === S" := (R <<= S /\ S <<= R) (at level 70). + + Variables (X: Type) (R S: X -> X -> Prop) + (H1: R <<= S) (H2: S <<= clos_refl_trans X R). + + Fact sandwich_equiv : + clos_refl_trans X R === clos_refl_trans X S. + Proof using H1 H2. + split. + - now apply inclusion_mono. + - intros x y H3. apply inclusion_mono in H2. + now apply clos_rt_idempotent, H2. + Qed. + + Fact sandwich_confluent : + diamond S -> confluent R. + Proof using H1 H2. + intros H3 % diamond_confluent. + revert H3. apply diamond_ext, sandwich_equiv; auto. + Qed. + + Theorem TMT rho : + reflexive S -> tak_fun X S rho -> confluent R. + Proof using H1 H2. + intros H3 H4. + eapply sandwich_confluent, tak_diamond, H4. + Qed. + +End TMT. diff --git a/theories/LambdaCalculus/Util/facts.v b/theories/LambdaCalculus/Util/facts.v new file mode 100644 index 000000000..07d9a7b30 --- /dev/null +++ b/theories/LambdaCalculus/Util/facts.v @@ -0,0 +1,126 @@ +Require Import Relations List Lia PeanoNat. +Import ListNotations. +Require Import ssreflect. + +#[local] Arguments in_combine_l {A B l l' x y}. +#[local] Arguments app_inj_tail {A x y a b}. + +Lemma Forall2_repeat {X Y : Type} (P : X -> Y -> Prop) x y n : P x y -> Forall2 P (repeat x n) (repeat y n). +Proof. + move=> ?. elim: n; by constructor. +Qed. + +Lemma Forall_Forall_impl {X : Type} (P Q : X -> Prop) l : (Forall (fun x => P x -> Q x) l) -> Forall P l -> Forall Q l. +Proof. + elim; first done. + move=> > H ? IH /Forall_cons_iff [/H] ??. + by constructor; auto. +Qed. + +Lemma Forall2_repeat_r {X Y : Type} {P : X -> Y -> Prop} {l y n} : Forall2 P l (repeat y n) -> Forall (fun x => P x y) l. +Proof. + move E: (repeat y n)=> l' H. + elim: H n E; first done. + move=> > ?? IH [|n]; first done. + move=> [? /IH] ?. subst. + by constructor; auto. +Qed. + +Lemma Forall2_repeat_r' {X Y : Type} (P : X -> Y -> Prop) l y n : Forall (fun x => P x y) l -> length l = n -> Forall2 P l (repeat y n). +Proof. + move=> + <-. elim; first done. + move=> > ?? IH. by constructor. +Qed. + +Lemma nth_error_seq i k : i < k -> nth_error (seq 0 k) i = Some i. +Proof. + elim: k i; first lia. + move=> k IH [|i]; first done. + move=> ? /=. + rewrite -seq_shift nth_error_map IH; by [|lia]. +Qed. + +Lemma nth_error_Some' {X : Type} {l : list X} {i : nat} {x : X} : nth_error l i = Some x -> i < length l. +Proof. + move=> E. apply /nth_error_Some. by rewrite E. +Qed. + +Lemma Forall2_change {X Y : Type} (P Q : X -> Y -> Prop) l l1 l2 : + length l1 = length l2 -> + (forall i, match (nth_error l i, nth_error l1 i, nth_error l2 i) with (Some x, Some y1, Some y2) => P x y1 -> Q x y2 | _ => True end) -> + Forall2 P l l1 -> Forall2 Q l l2. +Proof. + move=> ++ H. elim: H l2; first by case. + move=> x y1 {}l {}l1 ?? IH [|y2 l2]; first done. + move=> /= [] /IH {}IH H. constructor; first by apply: (H 0). + apply: IH=> i. by apply: (H (S i)). +Qed. + +Lemma Forall2_change2 {Y : Type} (P Q : nat -> Y -> Prop) m l1 l2 x1 x2 x'1 x'2 : + (P (length l1) x1 -> Q (length l1) x'1) -> + (P (S (length l1)) x2 -> Q (S (length l1)) x'2) -> + (forall i x, i < S (S m) -> i <> length l1 -> i <> S (length l1) -> P i x -> Q i x) -> + Forall2 P (seq 0 (S (S m))) (l1 ++ x1 :: x2 :: l2) -> + Forall2 Q (seq 0 (S (S m))) (l1 ++ x'1 :: x'2 :: l2). +Proof. + move=> Hx1 Hx2 H'. apply: Forall2_change; first by rewrite !length_app. + move=> i. + case Ex: (nth_error (seq _ _) i) => [x|]; last done. + case Ey1: (nth_error (l1 ++ x1 :: x2 :: l2) i) => [y1|]; last done. + case Ey2: (nth_error (l1 ++ x'1 :: x'2 :: l2) i) => [y2|]; last done. + move: (Ex) => /nth_error_Some'. rewrite length_seq=> Hx. + move: Ex. rewrite nth_error_seq; first done. + move=> [?]. subst i. + have [?|[?|[??]]] : x = length l1 \/ x = S (length l1) \/ (x <> length l1 /\ x <> S (length l1)) by lia. + - subst x. move: Ey1. rewrite nth_error_app2; first done. + rewrite Nat.sub_diag=> - [<-]. + move: Ey2. rewrite nth_error_app2; first done. + rewrite Nat.sub_diag=> - [<-]. by apply: Hx1. + - subst x. move: Ey1. rewrite nth_error_app2; first lia. + have ->: S (length l1) - length l1 = 1 by lia. + move=> [<-]. move: Ey2. rewrite nth_error_app2; first lia. + have ->: S (length l1) - length l1 = 1 by lia. + move=> [<-]. by apply: Hx2. + - suff ->: y1 = y2 by apply: H'. + have [?|?] : x < length l1 \/ x > S (length l1) by lia. + + move: Ey1. rewrite nth_error_app1; first done. + move: Ey2. rewrite nth_error_app1; first done. + by move=> -> [<-]. + + move: Ey1 Ey2. + change (l1 ++ x1 :: x2 :: l2) with (l1 ++ [x1; x2] ++ l2). + change (l1 ++ x'1 :: x'2 :: l2) with (l1 ++ [x'1; x'2] ++ l2). + rewrite !app_assoc. rewrite !nth_error_app2 ?length_app /=; [lia..|]. + by move=> -> [<-]. +Qed. + +Lemma Forall2_map_r {X Y Z : Type} (f : Y -> Z) (P : X -> Z -> Prop) l1 l2 : Forall2 P l1 (map f l2) <-> Forall2 (fun x y => P x (f y)) l1 l2. +Proof. + split. + - move E: (map f l2) => l3 H. + elim: H l2 E; first by case. + move=> > ??? [|??]; first done. + move=> /= [??]. subst. + by auto using Forall2. + - elim; by constructor. +Qed. + +Lemma Forall2_map_l {X Y Z : Type} (f : X -> Z) (P : Z -> Y -> Prop) l1 l2 : Forall2 P (map f l1) l2 <-> Forall2 (fun x y => P (f x) y) l1 l2. +Proof. + split. + - move E: (map f l1) => l3 H. + elim: H l1 E; first by case. + move=> > ??? [|??]; first done. + move=> /= [??]. subst. + by auto using Forall2. + - elim; by constructor. +Qed. + +Lemma Forall2_trans {X Y Z : Type} (P : X -> Y -> Prop) (Q : Y -> Z -> Prop) (R : X -> Z -> Prop) l1 l2 l3 : + (forall x y z, P x y -> Q y z -> R x z) -> Forall2 P l1 l2 -> Forall2 Q l2 l3 -> Forall2 R l1 l3. +Proof. + move=> H H'. elim: H' l3. + - by move=> [|??] /Forall2_length. + - move=> > ?? IH [|??] /[dup] /Forall2_length; first done. + move=> _ /Forall2_cons_iff [? /IH ?]. constructor; last done. + apply: H; by eassumption. +Qed. diff --git a/theories/LambdaCalculus/Util/stlc_facts.v b/theories/LambdaCalculus/Util/stlc_facts.v new file mode 100644 index 000000000..c44dd6611 --- /dev/null +++ b/theories/LambdaCalculus/Util/stlc_facts.v @@ -0,0 +1,342 @@ +(* + facts about the simplty typed lambda-calculus +*) + +Require Import Lia List Relations PeanoNat. +Import ListNotations. + +Require Undecidability.L.L. +Import L (term, var, app, lam). + +From Undecidability.LambdaCalculus Require Import Lambda HOMatching Util.facts Util.term_facts. +Require Import ssreflect ssrbool. + +#[local] Unset Implicit Arguments. + +Set Default Goal Selector "!". + +#[local] Notation lams k M := (Nat.iter k lam M). +#[local] Notation apps M Ns := (fold_left app Ns M). +#[local] Notation arrs ss t := (fold_right arr t ss). +#[local] Notation steps := (clos_refl_trans _ step). + +Fixpoint ty_size (t : ty) : nat := + match t with + | atom => 1 + | arr s t => 1 + ty_size s + ty_size t + end. + +Lemma ty_size_arrs ss B : ty_size (arrs ss B) = list_sum (map (fun s => 1 + ty_size s) ss) + ty_size B. +Proof. + elim: ss; first done. + move=> ?? IH /=. rewrite IH /=. lia. +Qed. + +Lemma arrs_inj s1s s2s t : arrs s1s t = arrs s2s t -> s1s = s2s. +Proof. + elim: s1s s2s. + - move=> [|??]; first done. + move=> /= /(f_equal ty_size) /=. rewrite ty_size_arrs. lia. + - move=> ?? IH [|??]. + + move=> /= /(f_equal ty_size) /=. rewrite ty_size_arrs. lia. + + by move=> [<-] /IH <-. +Qed. + +Lemma arrs_arrs s1s s2s t : arrs s1s (arrs s2s t) = arrs (s1s ++ s2s) t. +Proof. + by rewrite fold_right_app. +Qed. + +Inductive stlc_app_spec (Gamma : list ty) (t : ty) (M N : term) : Prop := + | stlc_app_spec_intro s : stlc Gamma M (arr s t) -> stlc Gamma N s -> stlc_app_spec Gamma t M N. +Inductive stlc_lam_spec (Gamma : list ty) (t : ty) (M : term) : Prop := + | stlc_lam_spec_intro s' t' : t = arr s' t' -> stlc (cons s' Gamma) M t' -> stlc_lam_spec Gamma t M. + +Lemma stlcE Gamma M t : stlc Gamma M t -> + match M with + | var x => nth_error Gamma x = Some t + | app M N => stlc_app_spec Gamma t M N + | lam M => stlc_lam_spec Gamma t M + end. +Proof. case; [|econstructor..]; by eauto. Qed. + +Lemma stlc_appsE Gamma M Ns t : stlc Gamma (apps M Ns) t -> + exists ss, Forall2 (stlc Gamma) Ns ss /\ stlc Gamma M (arrs ss t). +Proof. + elim: Ns M t. + - move=> M t /= ?. by exists []. + - move=> N Ns IH M t /= /IH [ss] [?]. + move=> /stlcE [] s *. exists (s :: ss). by split; [constructor|]. +Qed. + +Lemma stlc_lamsE Gamma M ss B : stlc Gamma (lams (length ss) M) (arrs ss B) -> stlc (rev ss ++ Gamma) M B. +Proof. + elim: ss Gamma; first done. + move=> ?? IH ? /= /stlcE [] ?? [<- <-] /IH. + by rewrite -app_assoc. +Qed. + +Lemma stlc_lamsE' Gamma M n ss B : n = length ss -> stlc Gamma (lams n M) (arrs ss B) -> stlc (rev ss ++ Gamma) M B. +Proof. move=> ->. by apply: stlc_lamsE. Qed. + +Lemma stlc_allfv_ren Gamma Delta xi M t : allfv (fun x => forall s, nth_error Gamma x = Some s -> nth_error Delta (xi x) = Some s) M -> + stlc Gamma M t -> stlc Delta (ren xi M) t. +Proof. + move=> + H. elim: H xi Delta. + - move=> > ? > /= H. constructor. by apply: H. + - move=> > ? IH1 ? IH2 > /= [] /IH1 {}IH1 /IH2 {}IH2. + econstructor; by eassumption. + - move=> > ? IH > /= H. constructor. + apply: IH. by apply: allfv_impl H => - [|?] /=. +Qed. + +Lemma stlc_ren Gamma Delta xi M t : (forall x s, nth_error Gamma x = Some s -> nth_error Delta (xi x) = Some s) -> + stlc Gamma M t -> stlc Delta (ren xi M) t. +Proof. + move=> ?. apply: stlc_allfv_ren. by apply: allfv_trivial. +Qed. + +(* typing is preserved under substitutions *) +Theorem stlc_subst {Gamma Delta M t} sigma : + stlc Gamma M t -> + (forall n s, nth_error Gamma n = Some s -> stlc Delta (sigma n) s) -> + stlc Delta (subst sigma M) t. +Proof. + move=> H. elim: H Delta sigma. + - move=> > ??? H /=. by apply: H. + - move=> > ? IH1 ? IH2 > H /=. econstructor. + + by apply: IH1. + + by apply: IH2. + - move=> > ? IH > H /=. constructor. + apply: IH=> - [|n] /=. + + move=> ? [<-]. by constructor. + + move=> ? /H ?. by apply: stlc_ren; last by eassumption. +Qed. + +Lemma stlc_step Gamma M N t : step M N -> stlc Gamma M t -> stlc Gamma N t. +Proof. + move=> H. elim: H Gamma t. + - move=> > /stlcE [] ? /stlcE [] ?? [<- <-] H1 H2. + apply: stlc_subst; first by eassumption. + move=> [|?] ? /=. + + by move=> [<-]. + + by apply: stlc_var. + - move=> > ? IH > /stlcE [] ? /IH ??. by apply: stlc_app; eassumption. + - move=> > ? IH > /stlcE [] ?? /IH ?. by apply: stlc_app; eassumption. + - move=> > ? IH > /stlcE [] ?? -> /IH ?. by constructor. +Qed. + +(* subject reduction *) +Lemma stlc_steps Gamma M N t : steps M N -> stlc Gamma M t -> stlc Gamma N t. +Proof. + by elim=> >; [apply: stlc_step|auto..]. +Qed. + +Lemma stlc_allfv_not_None Gamma M t : + stlc Gamma M t -> + allfv (fun x => nth_error Gamma x <> None) M. +Proof. + elim. + - by move=> > /= ->. + - by move=> > /=. + - move=> > /= ?. by apply: allfv_impl => -[|?]. +Qed. + +Lemma stlc_lams Gamma k M ss t : length ss = k -> stlc (rev ss ++ Gamma) M t -> stlc Gamma (lams k M) (arrs ss t). +Proof. + elim: k ss Gamma t; first by case. + move=> k IH [|? ss] Gamma t /=; first done. + move=> [/IH]. rewrite -app_assoc=> /[apply]. by apply: stlc_lam. +Qed. + +Lemma stlc_apps Gamma M Ms ss t : stlc Gamma M (arrs ss t) -> Forall2 (stlc Gamma) Ms ss -> stlc Gamma (apps M Ms) t. +Proof. + move=> + H. elim: H M t; first done. + move=> M' s' {}Ms {}ss ?? IH M t /= H. apply IH. + by apply: stlc_app; first eassumption. +Qed. + +Lemma stlc_closed M t : stlc [] M t -> forall P, allfv P M. +Proof. + move=> /stlc_allfv_not_None H ?. apply: allfv_impl H. by case. +Qed. + +Lemma ext_stlc_subst_term {Gamma M A sigma1 sigma2} : (forall x, nth_error Gamma x <> None -> sigma1 x = sigma2 x) -> stlc Gamma M A -> subst sigma1 M = subst sigma2 M. +Proof. + move=> H' /stlc_allfv_not_None H. apply: ext_allfv_subst_term. by apply: allfv_impl H. +Qed. + +Module Fundamental. + +Definition Arr (P Q : term -> Prop) (M : term) := forall N, P N -> Q (app M N). + +#[local] Notation all P l := (fold_right and True (map P l)). + +Fixpoint interp (P : term -> Prop) (M : term) (s : ty) : Prop := + match s with + | atom => P M + | arr s t => Arr (fun N => interp P N s) (fun N => interp P N t) M + end. + +(* P-compatible head expansion *) +Inductive head_exp (P : term -> Prop) : term -> term -> Prop := + | head_exp_lam M N : P N -> head_exp P (subst (scons N var) M) (app (lam M) N) + | head_exp_app M M' N : head_exp P M M' -> P N -> head_exp P (app M N) (app M' N). + +Record Saturated (Q P : term -> Prop) := + { Saturated_incl : forall M, P M -> Q M; + Saturated_neutral : forall M, neutral Q M -> P M }. + +Arguments Saturated_incl {Q P}. +Arguments Saturated_neutral {Q P}. + +Record Admissible (P : term -> Prop) := + { Admissible_head_exp M N : head_exp P M N -> P M -> P N; + Admissible_neutral M : neutral P M -> P M; + Admissible_app_var M x : P (app M (var x)) -> P M }. + +Lemma head_expE (P : term -> Prop) M N : head_exp P M N -> + match N with + | var _ => False + | app N1 N2 => + (exists N1', N1 = lam N1' /\ M = (subst (scons N2 var) N1') /\ P N2) \/ + (exists M1, M = app M1 N2 /\ head_exp P M1 N1 /\ P N2) + | lam _ => False + end. +Proof. + case=> *; [left|right]; by do ? econstructor. +Qed. + +Lemma Admissible_Saturated_interp {P} : Admissible P -> forall t, Saturated P (fun M => interp P M t). +Proof. + move=> HP. elim. + { constructor=> ?. + - done. + - by apply: (Admissible_neutral P HP). } + move=> s IHs t IHt. constructor=> M /= HM. + - have /HM : interp P (var 0) s. + { apply: (Saturated_neutral IHs). by constructor. } + move=> /(Saturated_incl IHt). by apply: (Admissible_app_var P HP). + - move=> N /(Saturated_incl IHs) ?. + apply: (Saturated_neutral IHt). by constructor. +Qed. + +Lemma interp_head_exp {P : term -> Prop} {M N t} : Admissible P -> + head_exp P M N -> interp P M t -> interp P N t. +Proof. + move=> HP. have HQ := Admissible_Saturated_interp HP. elim: t M N. + { move=> *. apply: (Admissible_head_exp _ HP); eassumption. } + move=> s IH t IH' M N /= ? IH'' N' Hs. + apply: IH'. { constructor; [|apply: (Saturated_incl (HQ _))]; eassumption. } + by apply: IH''. +Qed. + +Definition satis (P : term -> Prop) (Gamma : list ty) M t := + forall sigma, (forall i s, nth_error Gamma i = Some s -> interp P (sigma i) s) -> + interp P (subst sigma M) t. + +Arguments satis P Gamma M !t /. + +Lemma satisI P Gamma M t : Admissible P -> stlc Gamma M t -> satis P Gamma M t. +Proof. + move=> HP. have HQ := Admissible_Saturated_interp HP. elim. + - move=> > + sigma H => /H. apply. + - move=> > ? IH1 ? IH2 sigma H /=. apply: (IH1 sigma H). by apply IH2. + - move=> > ? IH sigma H /= N HN. apply: (interp_head_exp HP). + + apply: head_exp_lam. apply: (Saturated_incl (HQ _)). by eassumption. + + rewrite subst_subst_term. apply: IH=> - [|i] /=. + * by move=> ? [<-]. + * move=> ? /H. by rewrite subst_ren_term subst_var_term. +Qed. + +(* fundamental theorem for admissible predicates *) +Theorem fundamental (P : term -> Prop) Gamma M t : Admissible P -> + stlc Gamma M t -> P M. +Proof. + move=> /[dup] HP /satisI /[apply] /(_ var). + rewrite subst_var_term. + have HQ := Admissible_Saturated_interp HP. + move=> H. apply: (Saturated_incl (HQ _)). + apply: H=> i *. have : neutral P (var i) by constructor. + by apply: (Saturated_neutral (HQ _)). +Qed. + +End Fundamental. + +Module Admissible_wn. + +Lemma neutal_wn_wn M : neutral wn M -> wn M. +Proof. + suff: neutral wn M -> exists N, clos_refl_trans term step M N /\ neutral normal_form N. + { move=> /[apply] - [N] [??]. exists N; [done|by apply: neutral_normal_form]. } + elim. { move=> x. exists (var x). by split; [apply: rt_refl|constructor]. } + move=> {}M N H1M [M'] [HMM' HM'] [N'] HNN' HN'. + exists (app M' N'). split; [|by constructor]. + apply: (rt_trans _ _ _ (app M' N)). + - by apply: rt_stepsAppL. + - by apply: rt_stepsAppR. +Qed. + +Lemma head_exp_step M N : Fundamental.head_exp wn M N -> step N M. +Proof. + elim. { move=> *. by apply: stepSubst. } + move=> *. by apply: stepAppL. +Qed. + +Lemma step_wn M N : step M N -> wn N -> wn M. +Proof. + move=> ? [???]. econstructor; [|eassumption]. + by apply: rt_trans; [apply: rt_step|]; eassumption. +Qed. + +Lemma head_exp_wn M N : Fundamental.head_exp wn M N -> wn M -> wn N. +Proof. + by move=> /head_exp_step /step_wn. +Qed. + +Lemma wn_ren xi M : wn (ren xi M) -> wn M. +Proof. + case=> N /steps_renE [?] [->] ? /normal_form_ren' /wn_intro. by apply. +Qed. + +Lemma wn_lam M : wn M -> wn (lam M). +Proof. + case=> N HMN ?. apply: (wn_intro (lam N)); [|by constructor]. + elim: HMN; by eauto using clos_refl_trans, step with nocore. +Qed. + +Lemma wn_app_var M x : wn (app M (var x)) -> wn M. +Proof. + case=> N /clos_rt_rt1n_iff. + move E: (app M (var x)) => M' H. elim: H M E. + { move=> ?? E H. case: H E; [done|done|..]. + - move=> > ? [] -> _. by econstructor; [apply: rt_refl|constructor]. + - move=> > ?? [] -> _. by econstructor; [apply: rt_refl|]. } + move=> > []. + - move=> > IH ?? [??]. subst. + move: IH. rewrite subst_as_ren. + by move=> /clos_rt_rt1n_iff /wn_intro /[apply] /wn_ren /wn_lam. + - move=> > ?? IH ? [??]. subst. + move: (IH _ eq_refl) => /[apply]. + by apply: step_wn. + - move=> > H ? IH ? [??]. subst. + by move=> /stepE in H. + - done. +Qed. + +Lemma Admissible_wn : Fundamental.Admissible wn. +Proof. + constructor. + - by apply: head_exp_wn. + - by apply: neutal_wn_wn. + - by apply: wn_app_var. +Qed. + +End Admissible_wn. + +(* weak normalization property of stlc *) +Lemma stlc_wn Gamma M t : stlc Gamma M t -> wn M. +Proof. + apply: Fundamental.fundamental. + by apply: Admissible_wn.Admissible_wn. +Qed. diff --git a/theories/LambdaCalculus/Util/term_facts.v b/theories/LambdaCalculus/Util/term_facts.v index 5a8c6d782..e9b26b2a2 100644 --- a/theories/LambdaCalculus/Util/term_facts.v +++ b/theories/LambdaCalculus/Util/term_facts.v @@ -1,8 +1,9 @@ (* Key definitions and properties of lambda-terms *) -From Undecidability Require L.L L.Util.L_facts. -Require Import Undecidability.LambdaCalculus.Lambda. +From Undecidability.L Require L Util.L_facts. +From Undecidability.LambdaCalculus Require Import Lambda Util.facts Util.confluence. Require Import PeanoNat Lia List Relations. +Import ListNotations. Import L (term, var, app, lam). Import L_facts (bound, closed_dcl, dclvar, dclApp, dcllam). @@ -11,7 +12,7 @@ Require Import ssreflect. Set Default Goal Selector "!". -Unset Implicit Arguments. +#[local] Unset Implicit Arguments. Fixpoint allfv (P : nat -> Prop) t := match t with @@ -42,6 +43,7 @@ Fixpoint term_size (M : term) := #[local] Notation rt_steps := (clos_refl_trans _ step). #[local] Notation t_steps := (clos_trans _ step). #[local] Notation many_app M Ns := (fold_left app Ns M). +#[local] Notation lams k M := (Nat.iter k lam M). Lemma P_equal {X : Type} (P : X -> Prop) x1 x2 : P x1 -> x2 = x1 -> P x2. Proof. congruence. Qed. @@ -66,6 +68,17 @@ Lemma neutralE P M : neutral P M -> end. Proof. by case. Qed. +Lemma neutralE' (P : term -> Prop) M : neutral P M -> exists x Ms, M = many_app (var x) Ms /\ Forall P Ms. +Proof. + elim. + - move=> x. by exists x, []. + - move=> {}M N ? [x] [Ms] [->] ??. + exists x, (Ms ++ [N]). split. + + by rewrite fold_left_app /=. + + apply /Forall_app. split; first done. + by constructor. +Qed. + Lemma ext_ren_term xi1 xi2 t : (forall n, xi1 n = xi2 n) -> ren xi1 t = ren xi2 t. Proof. elim: t xi1 xi2. @@ -147,6 +160,33 @@ Proof. by rewrite ren_as_subst_term subst_var_term. Qed. Definition simpl_term := (ren_ren_term, ren_subst_term, subst_ren_term, subst_subst_term, subst_var_term, ren_id_term). +Lemma allfv_impl (P Q : nat -> Prop) t : + (forall x, P x -> Q x) -> allfv P t -> allfv Q t. +Proof. + elim: t P Q => /=. + - move=> >. by apply. + - move=> ? IH1 ? IH2 > /[dup] /IH1 {}IH1 /IH2 {}IH2. tauto. + - move=> > IH > H /=. apply: IH. + by case. +Qed. + +Lemma ext_allfv_subst_term sigma1 sigma2 t : allfv (fun x=> sigma1 x = sigma2 x) t -> + subst sigma1 t = subst sigma2 t. +Proof. + elim: t sigma1 sigma2. + - by move=> > /= ?. + - by move=> ? IH1 ? IH2 ?? /= [/IH1 -> /IH2 ->]. + - move=> ? IH > /= Hsigma. congr lam. apply: IH. + apply: allfv_impl Hsigma. + by move=> [|x] /= => [|->]. +Qed. + +Lemma ext_allfv_ren_term xi1 xi2 t : allfv (fun x=> xi1 x = xi2 x) t -> ren xi1 t = ren xi2 t. +Proof. + move=> H. rewrite !ren_as_subst_term. apply: ext_allfv_subst_term. + by apply: allfv_impl H => ? /= ->. +Qed. + Lemma boundE k s : bound k s -> match s with | var n => k > n @@ -169,14 +209,26 @@ Proof. move=> /= ?. rewrite H; [lia|done]. Qed. -Lemma subst_closed {sigma t} : L.closed t -> subst sigma t = t. +Lemma allfv_closed M : (forall P, allfv P M) -> closed M. +Proof. + move=> HM sigma. rewrite -[RHS]subst_var_term. + apply: ext_allfv_subst_term. by apply: HM. +Qed. + +Lemma subst_closed sigma M : closed M -> subst sigma M = M. +Proof. by apply. Qed. + +Lemma ren_closed xi M : closed M -> ren xi M = M. +Proof. rewrite ren_as_subst_term. by apply. Qed. + +Lemma subst_L_closed {sigma t} : L.closed t -> subst sigma t = t. Proof. move=> /closed_dcl /bound_ext_subst_term. rewrite -[RHS]subst_var_term. apply. lia. Qed. -Lemma ren_closed {xi t} : L.closed t -> ren xi t = t. -Proof. rewrite ren_as_subst_term. by apply: subst_closed. Qed. +Lemma ren_L_closed {xi t} : L.closed t -> ren xi t = t. +Proof. rewrite ren_as_subst_term. by apply: subst_L_closed. Qed. Lemma L_subst_Lambda_subst s k t : L.closed t -> L.subst s k t = subst (fun n => if Nat.eqb n k then t else var n) s. @@ -188,7 +240,7 @@ Proof. congr lam. apply: ext_subst_term. move=> [|n] /=; first done. case: (Nat.eqb n k); last done. - by rewrite (ren_closed Ht). + by rewrite (ren_L_closed Ht). Qed. Lemma bound_ren {k k' xi t} : bound k t -> (forall n, n < k -> xi n < k') -> bound k' (ren xi t). @@ -377,14 +429,15 @@ Proof. move=> ? IH *. by apply: IH => - [|?]. Qed. -Lemma allfv_impl (P Q : nat -> Prop) t : - (forall x, P x -> Q x) -> allfv P t -> allfv Q t. +Lemma allfv_allfv_impl (P Q : nat -> Prop) t : + allfv (fun x => P x -> Q x) t -> allfv P t -> allfv Q t. Proof. elim: t P Q => /=. - move=> >. by apply. - - move=> ? IH1 ? IH2 > /[dup] /IH1 {}IH1 /IH2 {}IH2. tauto. - - move=> > IH > H /=. apply: IH. - by case. + - move=> ? IH1 ? IH2 > [/IH1 {}IH1] /IH2 {}IH2. + by move=> [/IH1] {}IH1 /IH2 {}IH2. + - move=> ? > IH > H /=. apply: IH. + apply: allfv_impl H. by case. Qed. Lemma allfv_dec P M : (forall x, P x \/ not (P x)) -> allfv P M \/ not (allfv P M). @@ -407,6 +460,18 @@ Proof. by apply: allfv_impl H => - [|?]. Qed. +Lemma allfv_ren' (P : nat -> Prop) xi t : + allfv P (ren xi t) -> allfv (funcomp P xi) t. +Proof. + elim: t P xi. + - done. + - move=> ? IH1 ? IH2 > /= [??]. split. + + by apply: IH1. + + by apply: IH2. + - move=> ? IH > /= /IH. + by apply: allfv_impl => - [|?]. +Qed. + Lemma allfv_subst (P : nat -> Prop) sigma t : allfv (fun x => allfv P (sigma x)) t -> allfv P (subst sigma t). Proof. @@ -418,21 +483,15 @@ Proof. apply: allfv_ren. by apply: allfv_impl H. Qed. -Lemma ext_allfv_subst_term sigma1 sigma2 t : allfv (fun x=> sigma1 x = sigma2 x) t -> - subst sigma1 t = subst sigma2 t. -Proof. - elim: t sigma1 sigma2. - - by move=> > /= ?. - - by move=> ? IH1 ? IH2 ?? /= [/IH1 -> /IH2 ->]. - - move=> ? IH > /= Hsigma. congr lam. apply: IH. - apply: allfv_impl Hsigma. - by move=> [|x] /= => [|->]. -Qed. - -Lemma ext_allfv_ren_term xi1 xi2 t : allfv (fun x=> xi1 x = xi2 x) t -> ren xi1 t = ren xi2 t. +Lemma allfv_subst' (P : nat -> Prop) sigma t : + allfv P (subst sigma t) -> allfv (fun x => allfv P (sigma x)) t. Proof. - move=> H. rewrite !ren_as_subst_term. apply: ext_allfv_subst_term. - by apply: allfv_impl H => ? /= ->. + elim: t P sigma. + - done. + - move=> ? IH1 ? IH2 > /= [??]. by auto. + - move=> ? IH > /= /IH. + apply: allfv_impl => - [|?] /=; [done|]. + move=> /allfv_ren'. by apply: allfv_impl. Qed. Lemma stepSubst' s t u : u = subst (scons t var) s -> step (app (lam s) t) u. @@ -561,6 +620,462 @@ Proof. elim: Ns M; [done|]. move=> > IH ? /=. by rewrite IH. Qed. Lemma subst_many_app sigma M Ns : subst sigma (many_app M Ns) = many_app (subst sigma M) (map (subst sigma) Ns). Proof. elim: Ns M; [done|]. move=> > IH ? /=. by rewrite IH. Qed. +Lemma normal_form_steps N M : normal_form N -> rt_steps N M -> N = M. +Proof. + move=> /normal_form_not_step H /clos_rt_rt1n_iff H'. + case: H' H; first done. + by move=> > + _ H => /H. +Qed. + +Lemma ren_apps xi M Ns : ren xi (many_app M Ns) = many_app (ren xi M) (map (ren xi) Ns). +Proof. + elim: Ns M; first done. + move=> ?? IH M /=. by rewrite IH. +Qed. + +Lemma subst_apps sigma M Ns : subst sigma (many_app M Ns) = many_app (subst sigma M) (map (subst sigma) Ns). +Proof. + elim: Ns M; first done. + move=> ?? IH M /=. by rewrite IH. +Qed. + +Lemma allfv_step P M N : step M N -> allfv P M -> allfv P N. +Proof. + move=> H. elim: H P. + - move=> /= > [HM HN]. apply: allfv_subst. + apply: allfv_impl HM. by case. + - by move=> > ? IH ? /= [/IH ??]. + - by move=> > ? IH ? /= [? /IH ?]. + - move=> > ? IH ?. by apply: IH. +Qed. + +Lemma allfv_steps P M N : rt_steps M N -> allfv P M -> allfv P N. +Proof. + elim. + - move=> > /allfv_step. by apply. + - done. + - by auto. +Qed. + +Lemma allfv_apps P M Ms : allfv P M -> Forall (allfv P) Ms -> allfv P (many_app M Ms). +Proof. + elim: Ms M; first done. + move=> M' Ms IH M ? /Forall_cons_iff [? /IH] /=. by apply. +Qed. + +Lemma allfv_lams P n M : allfv (Nat.iter n (scons True) P) M -> allfv P (lams n M). +Proof. + elim: n P; first done. + move=> n IH P. + rewrite Nat.iter_succ_r. + by apply: IH. +Qed. + +Lemma steps_ren xi M N : rt_steps M N -> rt_steps (ren xi M) (ren xi N). +Proof. + elim=> *. + - apply: rt_step. by apply: step_ren. + - by apply: rt_refl. + - apply: rt_trans; by eassumption. +Qed. + +Lemma steps_ren' xi M N : rt_steps (ren xi M) N -> exists N', N = ren xi N' /\ rt_steps M N'. +Proof. + move=> /clos_rt_rtn1_iff. elim. + - exists M. by split; [|apply: rt_refl]. + - move=> > H ? [?] [??]. subst. + move: H=> /step_renE [?] [??]. subst. + eexists. subst. split; first done. + by apply: rt_trans; [|apply: rt_step]; eassumption. +Qed. + +Lemma steps_subst sigma M N : rt_steps M N -> rt_steps (subst sigma M) (subst sigma N). +Proof. + elim=> *. + - apply: rt_step. by apply: subst_step. + - by apply: rt_refl. + - apply: rt_trans; by eassumption. +Qed. + +Lemma stepsAppL N M M' : rt_steps M M' -> rt_steps (app M N) (app M' N). +Proof. + elim=> *. + - apply: rt_step. by apply: stepAppL. + - by apply: rt_refl. + - apply: rt_trans; by eassumption. +Qed. + +Lemma stepsAppR N M M' : rt_steps M M' -> rt_steps (app N M) (app N M'). +Proof. + elim=> *. + - apply: rt_step. by apply: stepAppR. + - by apply: rt_refl. + - apply: rt_trans; by eassumption. +Qed. + +Lemma stepsLam M M' : rt_steps M M' -> rt_steps (lam M) (lam M'). +Proof. + elim=> *. + - apply: rt_step. by apply: stepLam. + - by apply: rt_refl. + - apply: rt_trans; by eassumption. +Qed. + +Lemma steps_subst' sigma sigma' M : (forall x, rt_steps (sigma x) (sigma' x)) -> rt_steps (subst sigma M) (subst sigma' M). +Proof. + elim: M sigma sigma'. + - move=> >. by apply. + - move=> M IHM N IHN > H /=. apply: rt_trans. + + apply: stepsAppL. apply IHM. by eassumption. + + apply: stepsAppR. apply IHN. by eassumption. + - move=> M IH > H /=. apply stepsLam. apply: IH. + move=> [|x] /=; first by apply: rt_refl. + apply: steps_ren. by apply: H. +Qed. + +Lemma steps_subst'' sigma sigma' M M' : (forall x, rt_steps (sigma x) (sigma' x)) -> rt_steps M M' -> rt_steps (subst sigma M) (subst sigma' M'). +Proof. + move=> H /(steps_subst sigma'). apply: rt_trans. by apply: steps_subst'. +Qed. + +Lemma stepAppsL M M' Ns : step M M' -> step (many_app M Ns) (many_app M' Ns). +Proof. + move: M M'. + elim: Ns; first done. + move=> N Ns IH /= M M' H. apply: IH. by apply: stepAppL. +Qed. + +Lemma stepsAppsL M M' Ns : rt_steps M M' -> rt_steps (many_app M Ns) (many_app M' Ns). +Proof. + elim=> *. + - apply: rt_step. by apply: stepAppsL. + - apply: rt_refl. + - apply: rt_trans; by eassumption. +Qed. + +Lemma stepsAppsR M Ms M's : Forall2 rt_steps Ms M's -> rt_steps (many_app M Ms) (many_app M M's). +Proof. + move=> H. elim: H M; first by apply: rt_refl. + move=> > ?? IH M /=. + apply: rt_trans. + { apply: stepsAppsL. apply: stepsAppR. by eassumption. } + by apply: IH. +Qed. + +Lemma stepsLams k M M' : rt_steps M M' -> rt_steps (lams k M) (lams k M'). +Proof. + move=> ?. elim: k; first done. + move=> *. rewrite /=. apply: stepsLam. by eassumption. +Qed. + +Definition up (sigma: nat -> term) := scons (var 0) (funcomp (ren S) sigma). + +Lemma subst_lams sigma k M : subst sigma (lams k M) = lams k (subst (Nat.iter k up sigma) M). +Proof. + elim: k sigma M; first done. + move=> k IH sigma M. + rewrite !Nat.iter_succ_r /=. + rewrite IH /=. congr (lams _ _). + by rewrite -Nat.iter_succ_r /=. +Qed. + +Lemma steps_refl M N : M = N -> rt_steps M N. +Proof. + move=> <-. by apply: rt_refl. +Qed. + +Lemma stepsReds M Ns : rt_steps (many_app (lams (length Ns) M) Ns) (subst (fold_left (fun sigma N => scons N sigma) Ns var) M). +Proof. + suff: forall sigma, rt_steps (many_app (lams (length Ns) (subst (Nat.iter (length Ns) up sigma) M)) Ns) (subst (fold_left (fun sigma N => scons N sigma) Ns sigma) M). + { move=> /(_ var) H. apply: rt_trans; [|by apply: H]. + apply: steps_refl. congr (many_app _ _). congr (lams _ _). + rewrite -[LHS]subst_var_term. apply: ext_subst_term. + elim: Ns {H}; first done. + move=> N Ns IH [|x] /=; first done. + by rewrite -IH. } + elim: Ns M. + - move=> ? sigma /=. by apply: rt_refl. + - move=> N Ns IH M sigma /=. + apply: rt_trans. + + apply: stepsAppsL. apply: rt_step. by apply: stepSubst. + + apply: rt_trans; [|by apply: IH]. apply: steps_refl. + rewrite subst_lams. congr (many_app _ _). congr (lams _ _). + rewrite subst_subst_term. apply: ext_subst_term. + move: sigma {IH}. elim: Ns. + { move=> sigma [|x] /=; first done. + rewrite subst_ren_term. by apply: subst_var_term. } + move=> n' Ns IH sigma [|x] /=; first done. + by rewrite -IH subst_ren_term ren_subst_term /=. +Qed. + +Lemma iter_up_lt k x sigma : x < k -> Nat.iter k up sigma x = var x. +Proof. + elim: k sigma x. + - lia. + - move=> k IH sigma [|x] ? /=; first done. + change (var (S x)) with (ren S (var x)). + congr ren. apply: IH. lia. +Qed. + +Lemma iter_up_ge k x sigma : x >= k -> Nat.iter k up sigma x = ren (fun y => k + y) (sigma (x - k)). +Proof. + elim: k sigma x. + - move=> *. by rewrite Nat.sub_0_r ren_id_term. + - move=> k IH sigma [|x] ? /=; first by lia. + rewrite IH; first by lia. + by rewrite ren_ren_term. +Qed. + +Lemma iter_up_eq (x : nat) (sigma : nat -> term) : + Nat.iter x up sigma x = ren (Nat.add x) (sigma 0). +Proof. + by rewrite iter_up_ge ?Nat.sub_diag. +Qed. + +Lemma apps_apps M M1s M2s : many_app (many_app M M1s) M2s = many_app M (M1s ++ M2s). +Proof. + elim: M1s M; first done. + move=> > + ?. by apply. +Qed. + +Lemma lams_lams k1 k2 M : lams k1 (lams k2 M) = lams (k1 + k2) M. +Proof. + elim: k1; first done. + by move=> ? /= ->. +Qed. + +Lemma stepsRed M N : rt_steps (app (lam M) N) (subst (scons N var) M). +Proof. apply: rt_step. by apply: stepSubst. Qed. + +Lemma stepsReds' k (M : term) (Ns : list term) : length Ns = k -> + rt_steps (many_app (lams k M) Ns) (subst (fold_left (fun sigma N => scons N sigma) Ns var) M). +Proof. move=> <-. by apply: stepsReds. Qed. + +Lemma allfv_var (P : nat -> Prop) (x : nat) : P x -> allfv P (var x). +Proof. done. Qed. + +Lemma allfv_app P M1 M2 : allfv P M1 -> allfv P M2 -> allfv P (app M1 M2). +Proof. + move=> *. by split. +Qed. + +Lemma apps_inj M Ms M's : many_app M Ms = many_app M M's -> Ms = M's. +Proof. + elim /rev_ind: Ms M M's. + - move=> ? [|??]; first done. + move=> /(f_equal term_size) /=. rewrite term_size_many_app /=. lia. + - move=> > IH ? M's. elim /rev_ind: M's. + + move=> /(f_equal term_size) /=. rewrite term_size_many_app map_app list_sum_app /=. lia. + + move=> ?? _. rewrite !fold_left_app /=. + by move=> [] /IH <- <-. +Qed. + +Lemma Forall2_steps_refl Ms : Forall2 rt_steps Ms Ms. +Proof. + elim: Ms; first done. + move=> *. constructor; last done. + by apply: rt_refl. +Qed. + +Lemma apps_last M Ms N : many_app M (Ms ++ [N]) = app (many_app M Ms) N. +Proof. by rewrite fold_left_app. Qed. + +Lemma step_apps_varE x Ms M : step (many_app (var x) Ms) M -> exists M's, M = many_app (var x) M's /\ Forall2 rt_steps Ms M's. +Proof. + move E: (many_app (var x) Ms) => M' H. elim: H Ms E. + - move=> ?? Ms. elim /rev_ind: Ms; first done. + move=> ? M's _. rewrite apps_last. + move=> []. elim /rev_ind: M's; first done. + move=> ?? _. by rewrite apps_last. + - move=> > ? IH Ms. elim /rev_ind: Ms; first done. + move=> ?? _. rewrite apps_last. + move=> [??]. subst. + move: (IH _ eq_refl) => [M's] [??]. subst. + eexists. split; first by rewrite -apps_last. + apply: Forall2_app; first done. + by apply: Forall2_steps_refl. + - move=> > ? IH Ms. elim /rev_ind: Ms; first done. + move=> ? M's _. rewrite apps_last. + move=> [??]. subst. + eexists. split; first by rewrite -apps_last. + apply: Forall2_app. + + by apply: Forall2_steps_refl. + + constructor; last done. by apply: rt_step. + - move=> > ?? Ms. elim /rev_ind: Ms; first done. + move=> > _. by rewrite apps_last. +Qed. + +Lemma steps_apps_varE x Ms M's : rt_steps (many_app (var x) Ms) (many_app (var x) M's) -> Forall2 rt_steps Ms M's. +Proof. + move E: (many_app (var x) Ms)=> M. + move E': (many_app (var x) M's)=> M' /clos_rt_rt1n_iff H. + elim: H Ms M's E E'. + - move=> ? Ms M's <- /apps_inj <-. + by apply: Forall2_steps_refl. + - move=> > H ? IH > ??. subst. + move: H => /step_apps_varE [M's] [?] H. subst. + apply: Forall2_trans H (IH _ _ eq_refl eq_refl). + move=> >. by apply: rt_trans. +Qed. + +Lemma step_lamE M N : step (lam M) N -> match N with lam N' => step M N' | _ => False end. +Proof. + intros H. by inversion H; subst. +Qed. + +Lemma steps_lamE M N : rt_steps (lam M) N -> match N with lam N' => rt_steps M N' | _ => False end. +Proof. + move E: (lam M) => M' /clos_rt_rt1n_iff H. + elim: H M E. + - move=> ?? <-. by apply: rt_refl. + - move=> ? {}M M'' H _ IH ??. subst. + move=> /step_lamE in H. + move: M H IH=> [?|??|?]; [done..|]. + move=> ? /(_ _ eq_refl). + move: M''=> [?|??|?]; [done..|]. + move=> ?. by apply: rt_trans; [apply: rt_step|]; eassumption. +Qed. + +Lemma steps_lamsE k M N : rt_steps (lams k M) (lams k N) -> rt_steps M N. +Proof. + elim: k; first done. + by move=> k IH /= /steps_lamE /IH. +Qed. + +Lemma steps_var_absurd (P : Prop) M x : allfv (fun y => y <> x) M -> rt_steps M (var x) -> P. +Proof. + by move=> /allfv_steps /[apply]. +Qed. + +Lemma subst_lam sigma M : subst sigma (lam M) = lam (subst (up sigma) M). +Proof. done. Qed. + +Lemma allfv_ren_lt i n M : + i < n -> allfv (fun y : nat => y <> i) (ren (Nat.add n) M). +Proof. + move=> ?. apply: allfv_ren. apply: allfv_trivial. + move=> /=. lia. +Qed. + +Module Confluence. +(* parallel reduction *) +Inductive par : term -> term -> Prop := + | par_var x : par (var x) (var x) + | par_lam M M' : par M M' -> par (lam M) (lam M') + | par_step M M' N N': par M M' -> par N N' -> par (app (lam M) N) (subst (scons N' var) M') + | par_app M M' N N': par M M' -> par N N' -> par (app M N) (app M' N'). + +Lemma par_step' M M' N N' T : par M M' -> par N N' -> T = (subst (scons N' var) M') -> par (app (lam M) N) T. +Proof. + intros ?? ->. now apply par_step. +Qed. + +Lemma reflexive_par : reflexive term par. +Proof. + intros M. now induction M; auto using par. +Qed. + +Lemma inclusion_step_par : inclusion term step par. +Proof. + intros M N H. now induction H; auto using par, reflexive_par. +Qed. + +Lemma inclusion_par_steps : inclusion term par rt_steps. +Proof. + intros M N H. induction H. + - now apply rt_refl. + - now apply stepsLam. + - eapply rt_trans. + + apply rt_step. now apply stepSubst. + + apply steps_subst''; [|assumption]. + intros [|x]; [assumption|]. + apply rt_refl. + - eapply rt_trans. + + apply stepsAppL. eassumption. + + apply stepsAppR. eassumption. +Qed. + +Fixpoint rho (M : term) := + match M with + | var x => var x + | lam M => lam (rho M) + | app (lam M) N => subst (scons (rho N) var) (rho M) + | app M N => app (rho M) (rho N) + end. + +Lemma par_ren xi M M' : par M M' -> par (ren xi M) (ren xi M'). +Proof. + intros H. revert xi. induction H; intros xi; cbn. + - now apply par_var. + - now apply par_lam; auto. + - eapply par_step'; [auto..|]. + rewrite ren_subst_term subst_ren_term. + apply ext_subst_term. now intros [|x]. + - now apply par_app; auto. +Qed. + +Lemma par_subst sigma sigma' M M' : (forall x, par (sigma x) (sigma' x)) -> par M M' -> par (subst sigma M) (subst sigma' M'). +Proof. + intros E H. revert sigma sigma' E. + induction H as [x|M M' H IH|M M' N N' H1 IH1 H2 IH2|M M' N N' H1 IH1 H2 IH2]. + - intros ?? E. now apply E. + - intros ?? E. cbn. apply par_lam. apply IH. + intros [|x]; cbn. + + now apply reflexive_par. + + apply par_ren. now apply E. + - intros ?? E. cbn. eapply (par_step' _ (subst (up sigma') M') _ (subst sigma' N')). + + apply IH1. intros [|x]; cbn. + * apply reflexive_par. + * apply par_ren. apply E. + + apply IH2. apply E. + + rewrite !subst_subst_term. apply ext_subst_term. intros [|x]; cbn. + * easy. + * now rewrite subst_ren_term subst_var_term. + - intros ?? E. cbn. apply par_app. + + now apply IH1. + + now apply IH2. +Qed. + +Lemma tak_fun_par_rho : tak_fun term par rho. +Proof. + intros M N H. + induction H as [x|M M' H IH|M M' N N' H1 IH1 H2 IH2|M M' N N' H1 IH1 H2 IH2]; cbn. + - now apply par_var. + - now apply par_lam. + - apply par_subst; [|assumption]. + intros [|x]; [assumption|]. + apply reflexive_par. + - destruct M. + + now apply par_app. + + now apply par_app. + + inversion H1. subst. apply par_step; [|assumption]. + inversion IH1. now subst. +Qed. +End Confluence. + +Lemma confluence_step: confluent step. +Proof. + eapply TMT. + - apply Confluence.inclusion_step_par. + - apply Confluence.inclusion_par_steps. + - apply Confluence.reflexive_par. + - apply Confluence.tak_fun_par_rho. +Qed. + +Lemma steps_nf_elim {P : Prop} {M M' N : term} : normal_form N -> rt_steps M M' -> (rt_steps M' N -> P) -> rt_steps M N -> P. +Proof. + move=> HN /confluence_step HM H /HM [N'] [H'] H''. apply: H. + apply: rt_trans; first by eassumption. + move: H'' HN => /clos_rt_rt1n_iff []. + - move=> *. by apply: rt_refl. + - by move=> > /normal_form_not_step. +Qed. + +Lemma steps_var_elim {P : Prop} {M M' : term} {x : nat} : rt_steps M M' -> (rt_steps M' (var x) -> P) -> rt_steps M (var x) -> P. +Proof. + apply: steps_nf_elim. by do 2 constructor. +Qed. + Module TermNotations. (* strong normalization *) Notation sn := (Acc (fun x y => step y x)). diff --git a/theories/_CoqProject b/theories/_CoqProject index aa746a80b..1b4def43e 100644 --- a/theories/_CoqProject +++ b/theories/_CoqProject @@ -836,4 +836,11 @@ IntersectionTypes/Reductions/CD_TYP_to_CD_TC.v IntersectionTypes/Reductions/SSTS01_to_CD_INH.v IntersectionTypes/Reductions/SNclosed_to_CD_TYP.v +LambdaCalculus/HOMatching.v +LambdaCalculus/HOMatching_undec.v +LambdaCalculus/Util/facts.v +LambdaCalculus/Util/stlc_facts.v +LambdaCalculus/Util/confluence.v +LambdaCalculus/Reductions/SSTS01_to_HOMbeta.v + Synthetic/Models_Equivalent.v