-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtrain.py
194 lines (158 loc) · 6.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import time
from models import *
from utils.datasets import *
from utils.utils import *
parser = argparse.ArgumentParser()
parser.add_argument('-epochs', type=int, default=68, help='number of epochs')
parser.add_argument('-batch_size', type=int, default=12, help='size of each image batch')
parser.add_argument('-data_config_path', type=str, default='cfg/coco.data', help='data config file path')
parser.add_argument('-cfg', type=str, default='cfg/yolov3.cfg', help='cfg file path')
parser.add_argument('-img_size', type=int, default=32 * 13, help='size of each image dimension')
parser.add_argument('-resume', default=False, help='resume training flag')
opt = parser.parse_args()
print(opt)
cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if cuda else 'cpu')
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
if cuda:
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.benchmark = True
def main(opt):
os.makedirs('checkpoints', exist_ok=True)
# Configure run
data_config = parse_data_config(opt.data_config_path)
num_classes = int(data_config['classes'])
if platform == 'darwin': # MacOS (local)
train_path = data_config['train']
else: # linux (cloud, i.e. gcp)
train_path = '../coco/trainvalno5k.part'
# Initialize model
model = Darknet(opt.cfg, opt.img_size)
# Get dataloader
dataloader = load_images_and_labels(train_path, batch_size=opt.batch_size, img_size=opt.img_size, augment=True)
# Reload saved optimizer state
start_epoch = 0
best_loss = float('inf')
if opt.resume:
checkpoint = torch.load('checkpoints/latest.pt', map_location='cpu')
model.load_state_dict(checkpoint['model'])
if torch.cuda.device_count() > 1:
print('Using ', torch.cuda.device_count(), ' GPUs')
model = nn.DataParallel(model)
model.to(device).train()
# # Transfer learning (train only YOLO layers)
# for i, (name, p) in enumerate(model.named_parameters()):
# if p.shape[0] != 650: # not YOLO layer
# p.requires_grad = False
# Set optimizer
# optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()))
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3,
momentum=.9, weight_decay=5e-4, nesterov=True)
start_epoch = checkpoint['epoch'] + 1
if checkpoint['optimizer'] is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
best_loss = checkpoint['best_loss']
del checkpoint # current, saved
else:
if torch.cuda.device_count() > 1:
print('Using ', torch.cuda.device_count(), ' GPUs')
model = nn.DataParallel(model)
model.to(device).train()
# Set optimizer
# optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=5e-4)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=.9, weight_decay=5e-4, nesterov=True)
# Set scheduler
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[54, 61], gamma=0.1)
modelinfo(model)
t0, t1 = time.time(), time.time()
print('%10s' * 16 % (
'Epoch', 'Batch', 'x', 'y', 'w', 'h', 'conf', 'cls', 'total', 'P', 'R', 'nTargets', 'TP', 'FP', 'FN', 'time'))
for epoch in range(opt.epochs):
epoch += start_epoch
# Multi-Scale YOLO Training
# img_size = random.choice(range(10, 20)) * 32 # 320 - 608 pixels
# dataloader = load_images_and_labels(train_path, batch_size=opt.batch_size, img_size=img_size, augment=True)
# print('Running this epoch with image size %g' % img_size)
# Update scheduler (automatic)
# scheduler.step()
# Update scheduler (manual)
if epoch < 54:
lr = 1e-3
elif epoch < 61:
lr = 1e-4
else:
lr = 1e-5
for g in optimizer.param_groups:
g['lr'] = lr
ui = -1
rloss = defaultdict(float) # running loss
metrics = torch.zeros(4, num_classes)
for i, (imgs, targets) in enumerate(dataloader):
if sum([len(x) for x in targets]) < 1: # if no targets continue
continue
# SGD burn-in
if (epoch == 0) & (i <= 1000):
lr = 1e-3 * (i / 1000) ** 4
for g in optimizer.param_groups:
g['lr'] = lr
# Compute loss, compute gradient, update parameters
loss = model(imgs.to(device), targets, requestPrecision=True)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Compute running epoch-means of tracked metrics
ui += 1
metrics += model.losses['metrics']
for key, val in model.losses.items():
rloss[key] = (rloss[key] * ui + val) / (ui + 1)
# Precision
precision = metrics[0] / (metrics[0] + metrics[1] + 1e-16)
k = (metrics[0] + metrics[1]) > 0
if k.sum() > 0:
mean_precision = precision[k].mean()
else:
mean_precision = 0
# Recall
recall = metrics[0] / (metrics[0] + metrics[2] + 1e-16)
k = (metrics[0] + metrics[2]) > 0
if k.sum() > 0:
mean_recall = recall[k].mean()
else:
mean_recall = 0
s = ('%10s%10s' + '%10.3g' * 14) % (
'%g/%g' % (epoch, opt.epochs - 1), '%g/%g' % (i, len(dataloader) - 1), rloss['x'],
rloss['y'], rloss['w'], rloss['h'], rloss['conf'], rloss['cls'],
rloss['loss'], mean_precision, mean_recall, model.losses['nT'], model.losses['TP'],
model.losses['FP'], model.losses['FN'], time.time() - t1)
t1 = time.time()
print(s)
# Write epoch results
with open('results.txt', 'a') as file:
file.write(s + '\n')
# Update best loss
loss_per_target = rloss['loss'] / rloss['nT']
if loss_per_target < best_loss:
best_loss = loss_per_target
# Save latest checkpoint
checkpoint = {'epoch': epoch,
'best_loss': best_loss,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, 'checkpoints/latest.pt')
# Save best checkpoint
if best_loss == loss_per_target:
os.system('cp checkpoints/latest.pt checkpoints/best.pt')
# Save backup checkpoint
if (epoch > 0) & (epoch % 5 == 0):
os.system('cp checkpoints/latest.pt checkpoints/backup' + str(epoch) + '.pt')
# Save final model
dt = time.time() - t0
print('Finished %g epochs in %.2fs (%.2fs/epoch)' % (epoch, dt, dt / (epoch + 1)))
if __name__ == '__main__':
torch.cuda.empty_cache()
main(opt)
torch.cuda.empty_cache()