-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathutils.py
executable file
·497 lines (393 loc) · 18.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import glob
import random
from collections import defaultdict
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from utils import torch_utils
# Set printoptions
torch.set_printoptions(linewidth=1320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
# Prevent OpenCV from multithreading (to use PyTorch DataLoader)
cv2.setNumThreads(0)
def float3(x): # format floats to 3 decimals
return float(format(x, '.3f'))
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
torch_utils.init_seeds(seed=seed)
def load_classes(path):
# Loads class labels at 'path'
fp = open(path, 'r')
names = fp.read().split('\n')
return list(filter(None, names)) # filter removes empty strings (such as last line)
def model_info(model):
# Plots a line-by-line description of a PyTorch model
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
print('\n%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % (
i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
print('Model Summary: %g layers, %g parameters, %g gradients' % (i + 1, n_p, n_g))
def coco_class_weights(): # frequency of each class in coco train2014
weights = 1 / torch.FloatTensor(
[187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671,
6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689,
4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004,
5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933,
1877, 17630, 4337, 4624, 1075, 3468, 135, 1380])
weights /= weights.sum()
return weights
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
# x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * max(img.shape[0:2])) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
torch.nn.init.constant_(m.bias.data, 0.0)
def xyxy2xywh(x):
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
def xywh2xyxy(x):
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
return y
def scale_coords(img_size, coords, img0_shape):
# Rescale x1, y1, x2, y2 from 416 to image size
gain = float(img_size) / max(img0_shape) # gain = old / new
pad_x = (img_size - img0_shape[1] * gain) / 2 # width padding
pad_y = (img_size - img0_shape[0] * gain) / 2 # height padding
coords[:, [0, 2]] -= pad_x
coords[:, [1, 3]] -= pad_y
coords[:, :4] /= gain
coords[:, :4] = torch.clamp(coords[:, :4], min=0)
return coords
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = (target_cls == c).sum() # Number of ground truth objects
n_p = i.sum() # Number of predicted objects
if n_p == 0 and n_gt == 0:
continue
elif n_p == 0 or n_gt == 0:
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum()
tpc = (tp[i]).cumsum()
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(tpc[-1] / (n_gt + 1e-16))
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(tpc[-1] / (tpc[-1] + fpc[-1]))
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(p)
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def bbox_iou(box1, box2, x1y1x2y2=True):
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.t()
# Get the coordinates of bounding boxes
if x1y1x2y2:
# x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else:
# x, y, w, h = box1
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \
(b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area
return inter_area / union_area # iou
def wh_iou(box1, box2):
# Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2
box2 = box2.t()
# w, h = box1
w1, h1 = box1[0], box1[1]
w2, h2 = box2[0], box2[1]
# Intersection area
inter_area = torch.min(w1, w2) * torch.min(h1, h2)
# Union Area
union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
return inter_area / union_area # iou
def compute_loss(p, targets): # predictions, targets
FT = torch.cuda.FloatTensor if p[0].is_cuda else torch.FloatTensor
lxy, lwh, lcls, lconf = FT([0]), FT([0]), FT([0]), FT([0])
txy, twh, tcls, indices = targets
MSE = nn.MSELoss()
CE = nn.CrossEntropyLoss()
BCE = nn.BCEWithLogitsLoss()
# Compute losses
# gp = [x.numel() for x in tconf] # grid points
for i, pi0 in enumerate(p): # layer i predictions, i
b, a, gj, gi = indices[i] # image, anchor, gridx, gridy
tconf = torch.zeros_like(pi0[..., 0]) # conf
# Compute losses
k = 1 # nT / bs
if len(b) > 0:
pi = pi0[b, a, gj, gi] # predictions closest to anchors
tconf[b, a, gj, gi] = 1 # conf
lxy += k * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss
lwh += k * MSE(pi[..., 2:4], twh[i]) # wh loss
lcls += (k / 4) * CE(pi[..., 5:], tcls[i]) # class_conf loss
# pos_weight = FT([gp[i] / min(gp) * 4.])
# BCE = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
lconf += (k * 64) * BCE(pi0[..., 4], tconf) # obj_conf loss
loss = lxy + lwh + lconf + lcls
# Add to dictionary
d = defaultdict(float)
losses = [loss.item(), lxy.item(), lwh.item(), lconf.item(), lcls.item()]
for name, x in zip(['total', 'xy', 'wh', 'conf', 'cls'], losses):
d[name] = x
return loss, d
def build_targets(model, targets):
# targets = [image, class, x, y, w, h]
if isinstance(model, nn.parallel.DistributedDataParallel):
model = model.module
txy, twh, tcls, indices = [], [], [], []
for i, layer in enumerate(get_yolo_layers(model)):
nG = model.module_list[layer][0].nG # grid size
anchor_vec = model.module_list[layer][0].anchor_vec
# iou of targets-anchors
gwh = targets[:, 4:6] * nG
iou = [wh_iou(x, gwh) for x in anchor_vec]
iou, a = torch.stack(iou, 0).max(0) # best iou and anchor
# reject below threshold ious (OPTIONAL, increases P, lowers R)
reject = True
if reject:
j = iou > 0.01
t, a, gwh = targets[j], a[j], gwh[j]
else:
t = targets
# Indices
b, c = t[:, :2].long().t() # target image, class
gxy = t[:, 2:4] * nG
gi, gj = gxy.long().t() # grid_i, grid_j
indices.append((b, a, gj, gi))
# XY coordinates
txy.append(gxy - gxy.floor())
# Width and height
twh.append(torch.log(gwh / anchor_vec[a])) # yolo method
# twh.append(torch.sqrt(gwh / anchor_vec[a]) / 2) # power method
# Class
tcls.append(c)
return txy, twh, tcls, indices
# @profile
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
"""
Removes detections with lower object confidence score than 'conf_thres'
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_conf, class)
"""
min_wh = 2 # (pixels) minimum box width and height
output = [None] * len(prediction)
for image_i, pred in enumerate(prediction):
# Experiment: Prior class size rejection
# x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
# a = w * h # area
# ar = w / (h + 1e-16) # aspect ratio
# n = len(w)
# log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
# x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
# from scipy.stats import multivariate_normal
# for c in range(60):
# shape_likelihood[:, c] =
# multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])
# Filter out confidence scores below threshold
class_conf, class_pred = pred[:, 5:].max(1)
# pred[:, 4] *= class_conf
i = (pred[:, 4] > conf_thres) & (pred[:, 2] > min_wh) & (pred[:, 3] > min_wh)
pred = pred[i]
# If none are remaining => process next image
if len(pred) == 0:
continue
# Select predicted classes
class_conf = class_conf[i]
class_pred = class_pred[i].unsqueeze(1).float()
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
pred[:, :4] = xywh2xyxy(pred[:, :4])
pred[:, 4] *= class_conf # improves mAP from 0.549 to 0.551
# Detections ordered as (x1y1x2y2, obj_conf, class_conf, class_pred)
pred = torch.cat((pred[:, :5], class_conf.unsqueeze(1), class_pred), 1)
# Get detections sorted by decreasing confidence scores
pred = pred[(-pred[:, 4]).argsort()]
det_max = []
nms_style = 'MERGE' # 'OR' (default), 'AND', 'MERGE' (experimental)
for c in pred[:, -1].unique():
dc = pred[pred[:, -1] == c] # select class c
dc = dc[:min(len(dc), 100)] # limit to first 100 boxes: https://github.com/ultralytics/yolov3/issues/117
# Non-maximum suppression
if nms_style == 'OR': # default
# METHOD1
# ind = list(range(len(dc)))
# while len(ind):
# j = ind[0]
# det_max.append(dc[j:j + 1]) # save highest conf detection
# reject = (bbox_iou(dc[j], dc[ind]) > nms_thres).nonzero()
# [ind.pop(i) for i in reversed(reject)]
# METHOD2
while dc.shape[0]:
det_max.append(dc[:1]) # save highest conf detection
if len(dc) == 1: # Stop if we're at the last detection
break
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
dc = dc[1:][iou < nms_thres] # remove ious > threshold
elif nms_style == 'AND': # requires overlap, single boxes erased
while len(dc) > 1:
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
if iou.max() > 0.5:
det_max.append(dc[:1])
dc = dc[1:][iou < nms_thres] # remove ious > threshold
elif nms_style == 'MERGE': # weighted mixture box
while len(dc):
i = bbox_iou(dc[0], dc) > nms_thres # iou with other boxes
weights = dc[i, 4:5]
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
det_max.append(dc[:1])
dc = dc[i == 0]
if len(det_max):
det_max = torch.cat(det_max) # concatenate
output[image_i] = det_max[(-det_max[:, 4]).argsort()] # sort
return output
def get_yolo_layers(model):
bool_vec = [x['type'] == 'yolo' for x in model.module_defs]
return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
a = torch.load(filename, map_location='cpu')
a['optimizer'] = []
torch.save(a, filename.replace('.pt', '_lite.pt'))
def coco_class_count(path='../coco/labels/train2014/'):
# Histogram of occurrences per class
nC = 80 # number classes
x = np.zeros(nC, dtype='int32')
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
x += np.bincount(labels[:, 0].astype('int32'), minlength=nC)
print(i, len(files))
def coco_only_people(path='../coco/labels/val2014/'):
# Find images with only people
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
if all(labels[:, 0] == 0):
print(labels.shape[0], file)
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = (torch.sigmoid(torch.from_numpy(x)).numpy() * 2)
fig = plt.figure(figsize=(6, 3), dpi=150)
plt.plot(x, ya, '.-', label='yolo method')
plt.plot(x, yb ** 2, '.-', label='^2 power method')
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.jpg', dpi=fig.dpi)
def plot_results(start=0): # from utils.utils import *; plot_results()
# Plot YOLO training results file 'results.txt'
# import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt')
fig = plt.figure(figsize=(14, 7))
s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Total Loss', 'Precision', 'Recall', 'mAP']
for f in sorted(glob.glob('results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11, 12]).T # column 11 is mAP
x = range(start, results.shape[1])
for i in range(8):
plt.subplot(2, 4, i + 1)
plt.plot(x, results[i, x], marker='.', label=f)
plt.title(s[i])
if i == 0:
plt.legend()
if i == 7:
plt.plot(x, results[i + 1, x], marker='.', label=f)
fig.tight_layout()
fig.savefig('results.jpg', dpi=fig.dpi)