-
-
Notifications
You must be signed in to change notification settings - Fork 16.7k
/
Copy pathclassifier.py
240 lines (199 loc) Β· 9.71 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# YOLOv5 classifier training
# Usage: python classifier.py --model yolov5s --data mnist --epochs 10 --img 128
import argparse
import logging
import math
import os
from copy import deepcopy
from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
import torchvision.transforms as T
from torch.cuda import amp
from tqdm import tqdm
from models.common import Classify
from utils.general import set_logging, check_file, increment_path, check_git_status, check_requirements
from utils.torch_utils import model_info, select_device, is_parallel
# Settings
logger = logging.getLogger(__name__)
set_logging()
# Show images
def imshow(img):
import matplotlib.pyplot as plt
import numpy as np
plt.imshow(np.transpose((img / 2 + 0.5).numpy(), (1, 2, 0))) # unnormalize
plt.savefig('images.jpg')
def train():
save_dir, data, bs, epochs, nw, imgsz = Path(opt.save_dir), opt.data, opt.batch_size, opt.epochs, \
min(os.cpu_count(), opt.workers), opt.img_size
# Directories
wdir = save_dir / 'weights'
wdir.mkdir(parents=True, exist_ok=True) # make dir
last, best = wdir / 'last.pt', wdir / 'best.pt'
# Download Dataset
if not Path(f'../{data}').is_dir():
url, f = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip', 'tmp.zip'
print(f'Downloading {url}...')
torch.hub.download_url_to_file(url, f)
os.system(f'unzip -q {f} -d ../ && rm {f}') # unzip
# Transforms
trainform = T.Compose([T.RandomGrayscale(p=0.01),
T.RandomHorizontalFlip(p=0.5),
T.RandomAffine(degrees=1, translate=(.2, .2), scale=(1 / 1.5, 1.5),
shear=(-1, 1, -1, 1), fill=(114, 114, 114)),
# T.Resize([imgsz, imgsz]), # very slow
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.25, 0.25, 0.25))]) # PILImage from [0, 1] to [-1, 1]
testform = T.Compose(trainform.transforms[-2:])
# Dataloaders
trainset = torchvision.datasets.ImageFolder(root=f'../{data}/train', transform=trainform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=True, num_workers=nw)
testset = torchvision.datasets.ImageFolder(root=f'../{data}/test', transform=testform)
testloader = torch.utils.data.DataLoader(testset, batch_size=bs, shuffle=False, num_workers=nw)
names = trainset.classes
nc = len(names)
print(f'Training {opt.model} on {data} dataset with {nc} classes...')
# Show images
# images, labels = iter(trainloader).next()
# imshow(torchvision.utils.make_grid(images[:16]))
# print(' '.join('%5s' % names[labels[j]] for j in range(16)))
# Model
if opt.model.startswith('yolov5'):
# YOLOv5 Classifier
model = torch.hub.load('ultralytics/yolov5', opt.model, pretrained=True, autoshape=False)
model.model = model.model[:8]
m = model.model[-1] # last layer
ch = m.conv.in_channels if hasattr(m, 'conv') else sum([x.in_channels for x in m.m]) # ch into module
c = Classify(ch, nc) # Classify()
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
model.model[-1] = c # replace
elif opt.model in torch.hub.list('rwightman/gen-efficientnet-pytorch'):
model = torch.hub.load('rwightman/gen-efficientnet-pytorch', opt.model, pretrained=True)
model.classifier = nn.Linear(model.classifier.in_features, nc)
else: # try torchvision
model = torchvision.models.__dict__[opt.model](pretrained=True)
model.fc = nn.Linear(model.fc.weight.shape[1], nc)
# print(model) # debug
model_info(model)
# Optimizer
lr0 = 0.0001 * bs # intial lr
lrf = 0.01 # final lr (fraction of lr0)
if opt.adam:
optimizer = optim.Adam(model.parameters(), lr=lr0 / 10)
else:
optimizer = optim.SGD(model.parameters(), lr=lr0, momentum=0.9, nesterov=True)
# Scheduler
lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# Train
model = model.to(device)
criterion = nn.CrossEntropyLoss() # loss function
best_fitness = 0.
# scaler = amp.GradScaler(enabled=cuda)
print(f'Image sizes {imgsz} train, {imgsz} test\n'
f'Using {nw} dataloader workers\n'
f'Logging results to {save_dir}\n'
f'Starting training for {epochs} epochs...\n\n'
f"{'epoch':10s}{'gpu_mem':10s}{'train_loss':12s}{'val_loss':12s}{'accuracy':12s}")
for epoch in range(epochs): # loop over the dataset multiple times
mloss = 0. # mean loss
model.train()
pbar = tqdm(enumerate(trainloader), total=len(trainloader)) # progress bar
for i, (images, labels) in pbar:
images, labels = resize(images.to(device)), labels.to(device)
# Forward
with amp.autocast(enabled=cuda):
loss = criterion(model(images), labels)
# Backward
loss.backward() # scaler.scale(loss).backward()
# Optimize
optimizer.step() # scaler.step(optimizer); scaler.update()
optimizer.zero_grad()
# Print
mloss += loss.item()
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
pbar.desc = f"{'%s/%s' % (epoch + 1, epochs):10s}{mem:10s}{mloss / (i + 1):<12.3g}"
# Test
if i == len(pbar) - 1:
fitness = test(model, testloader, names, criterion, pbar=pbar) # test
# Scheduler
scheduler.step()
# Best fitness
if fitness > best_fitness:
best_fitness = fitness
# Save model
final_epoch = epoch + 1 == epochs
if (not opt.nosave) or final_epoch:
ckpt = {'epoch': epoch,
'best_fitness': best_fitness,
'model': deepcopy(model.module if is_parallel(model) else model).half(),
'optimizer': None}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fitness:
torch.save(ckpt, best)
del ckpt
# Train complete
if final_epoch:
print(f'Training complete. Results saved to {save_dir}.')
# Show predictions
# images, labels = iter(testloader).next()
# predicted = torch.max(model(images), 1)[1]
# imshow(torchvision.utils.make_grid(images))
# print('GroundTruth: ', ' '.join('%5s' % names[labels[j]] for j in range(4)))
# print('Predicted: ', ' '.join('%5s' % names[predicted[j]] for j in range(4)))
def test(model, dataloader, names, criterion=None, verbose=False, pbar=None):
model.eval()
pred, targets, loss = [], [], 0
with torch.no_grad():
for images, labels in dataloader:
images, labels = resize(images.to(device)), labels.to(device)
y = model(images)
pred.append(torch.max(y, 1)[1])
targets.append(labels)
if criterion:
loss += criterion(y, labels)
pred, targets = torch.cat(pred), torch.cat(targets)
correct = (targets == pred).float()
if pbar:
pbar.desc += f"{loss / len(dataloader):<12.3g}{correct.mean().item():<12.3g}"
accuracy = correct.mean().item()
if verbose: # all classes
print(f"{'class':10s}{'number':10s}{'accuracy':10s}")
print(f"{'all':10s}{correct.shape[0]:10s}{accuracy:10.5g}")
for i, c in enumerate(names):
t = correct[targets == i]
print(f"{c:10s}{t.shape[0]:10s}{t.mean().item():10.5g}")
return accuracy
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='yolov5s', help='initial weights path')
parser.add_argument('--data', type=str, default='mnist', help='cifar10, cifar100 or mnist')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--batch-size', type=int, default=128, help='total batch size for all GPUs')
parser.add_argument('--img-size', type=int, default=64, help='train, test image sizes (pixels)')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=4, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
# Checks
check_git_status()
check_requirements()
# Parameters
device = select_device(opt.device, batch_size=opt.batch_size)
cuda = device.type != 'cpu'
opt.hyp = check_file(opt.hyp) # check files
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
resize = torch.nn.Upsample(size=(opt.img_size, opt.img_size), mode='bilinear', align_corners=False) # image resize
# Train
train()