diff --git a/README.md b/README.md
index 8c19e52c45d7..8f45ccd229b5 100644
--- a/README.md
+++ b/README.md
@@ -155,7 +155,6 @@ python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 12
- [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
- [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)
- [Architecture Summary](https://github.com/ultralytics/yolov5/issues/6998) 🌟 NEW
-- [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)
- [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW
- [ClearML Logging](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) 🌟 NEW
- [Deci Platform](https://github.com/ultralytics/yolov5/wiki/Deci-Platform) 🌟 NEW
@@ -171,23 +170,20 @@ python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 12
-|Comet ⭐ NEW|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|Weights & Biases
-|:-:|:-:|:-:|:-:|:-:|
-|Visualize model metrics and predictions and upload models and datasets in realtime with [Comet](https://bit.ly/yolov5-readme-comet)|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)
+|Comet ⭐ NEW|Deci ⭐ NEW|ClearML ⭐ NEW|Roboflow|
+|:-:|:-:|:-:|:-:|
+|Visualize model metrics and predictions and upload models and datasets in realtime with [Comet](https://bit.ly/yolov5-readme-comet)|Automatically compile and quantize YOLOv5 for better inference performance in one click at [Deci](https://bit.ly/yolov5-deci-platform)|Automatically track, visualize and even remotely train YOLOv5 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics)|
## Why YOLOv5
diff --git a/requirements.txt b/requirements.txt
index 0436f415c642..52f7b9ea57d2 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -16,8 +16,8 @@ tqdm>=4.64.0
# Logging -------------------------------------
tensorboard>=2.4.1
-# wandb
# clearml
+# comet
# Plotting ------------------------------------
pandas>=1.1.4
diff --git a/tutorial.ipynb b/tutorial.ipynb
index 5d867fb36c93..63abebc5b37f 100644
--- a/tutorial.ipynb
+++ b/tutorial.ipynb
@@ -655,7 +655,7 @@
"cell_type": "code",
"source": [
"#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
- "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML', 'W&B']\n",
+ "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n",
"\n",
"if logger == 'TensorBoard':\n",
" %load_ext tensorboard\n",
@@ -664,10 +664,7 @@
" %pip install -q comet_ml\n",
" import comet_ml; comet_ml.init()\n",
"elif logger == 'ClearML':\n",
- " %pip install -q clearml && clearml-init\n",
- "elif logger == 'W&B':\n",
- " %pip install -q wandb\n",
- " import wandb; wandb.login()"
+ " %pip install -q clearml && clearml-init"
],
"metadata": {
"id": "i3oKtE4g-aNn"
@@ -699,7 +696,7 @@
"YOLOv5 🚀 v6.2-56-g30e674b Python-3.7.13 torch-1.12.1+cu113 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
"\n",
"\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
- "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases\n",
+ "\u001b[34m\u001b[1mComet: \u001b[0mrun 'pip install comet' to automatically track and visualize YOLOv5 🚀 runs with Comet\n",
"\u001b[34m\u001b[1mClearML: \u001b[0mrun 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML\n",
"\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
"\n",
@@ -905,22 +902,6 @@
"id": "Lay2WsTjNJzP"
}
},
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "DLI1JmHU7B0l"
- },
- "source": [
- "## Weights & Biases Logging\n",
- "\n",
- "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n",
- "\n",
- "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n",
- "\n",
- "\n",
- "
"
- ]
- },
{
"cell_type": "markdown",
"metadata": {
diff --git a/utils/docker/Dockerfile b/utils/docker/Dockerfile
index 9b93fad7b203..be5c2fb71517 100644
--- a/utils/docker/Dockerfile
+++ b/utils/docker/Dockerfile
@@ -16,7 +16,7 @@ RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-
COPY requirements.txt .
RUN python -m pip install --upgrade pip wheel
RUN pip uninstall -y Pillow torchtext torch torchvision
-RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook Pillow>=9.1.0 \
+RUN pip install --no-cache -r requirements.txt albumentations comet clearml gsutil notebook Pillow>=9.1.0 \
'opencv-python<4.6.0.66' \
--extra-index-url https://download.pytorch.org/whl/cu113
diff --git a/utils/loggers/__init__.py b/utils/loggers/__init__.py
index 941d09e19e2d..bc8dd7621579 100644
--- a/utils/loggers/__init__.py
+++ b/utils/loggers/__init__.py
@@ -84,10 +84,10 @@ def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None,
self.csv = True # always log to csv
# Messages
- if not wandb:
- prefix = colorstr('Weights & Biases: ')
- s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
- self.logger.info(s)
+ # if not wandb:
+ # prefix = colorstr('Weights & Biases: ')
+ # s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
+ # self.logger.info(s)
if not clearml:
prefix = colorstr('ClearML: ')
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML"
@@ -110,9 +110,9 @@ def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None,
self.opt.hyp = self.hyp # add hyperparameters
self.wandb = WandbLogger(self.opt, run_id)
# temp warn. because nested artifacts not supported after 0.12.10
- if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
- s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
- self.logger.warning(s)
+ # if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
+ # s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
+ # self.logger.warning(s)
else:
self.wandb = None
diff --git a/utils/loggers/wandb/wandb_utils.py b/utils/loggers/wandb/wandb_utils.py
index d2dd0fa7c6cd..238f4edbf2a0 100644
--- a/utils/loggers/wandb/wandb_utils.py
+++ b/utils/loggers/wandb/wandb_utils.py
@@ -135,7 +135,7 @@ def __init__(self, opt, run_id=None, job_type='Training'):
# Temporary-fix
if opt.upload_dataset:
opt.upload_dataset = False
- LOGGER.info("Uploading Dataset functionality is not being supported temporarily due to a bug.")
+ # LOGGER.info("Uploading Dataset functionality is not being supported temporarily due to a bug.")
# Pre-training routine --
self.job_type = job_type