Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

What parameters should be set for enhancing training with existing model? #10037

Closed
1 task done
ralphflat opened this issue Nov 4, 2022 · 2 comments
Closed
1 task done
Labels
question Further information is requested Stale Stale and schedule for closing soon

Comments

@ralphflat
Copy link

ralphflat commented Nov 4, 2022

Search before asking

Question

We are trying to enhance the distributed yolov5s.pt model (we are using tagged 6.0 code, #5141, https://github.com/ultralytics/yolov5/releases/tag/v6.0) with additional training using some focused images. We have performed inferencing, using the distributed yolov5s.pt, and got quite a number of detections of objects on a set of images within our domain.

We are now executing train.py adding an additional ~220 images with labeled objects for some subset of COCO 80 classes. We executed the train.py as follows:

python train.py --img 640 --batch 64 --data dataset.yaml --weights "weights/yolov5s.pt" --epochs 300 --device 0 --freeze 10

Note that the frames have resolutions greater then 640 ( 1520 and 1920). We are using the distributed hyp.scratch.yaml parameters. We tried the “freeze 10” to freeze the backbone, which we understand freeze the feature extraction layers. Results:

image

The resulting model, when used in inferencing, produces considerably less object detections then the original yolov5s model.

Questions:
• Is there something, fundamentally, that we are doing wrong with the configuration of train.py?
• Does the “–img 640” need to be set to this because of the testing with yolov5s at 640? Or can we increase this to our min resolution?

Additional

No response

@ralphflat ralphflat added the question Further information is requested label Nov 4, 2022
@glenn-jocher
Copy link
Member

glenn-jocher commented Nov 4, 2022

👋 Hello! Thanks for asking about improving YOLOv5 🚀 training results.

Training and deployment should be done at similar inference size, i.e. train at 640, detect at 640, or train at 1920, detect at 1920.

Most of the time good results can be obtained with no changes to the models or training settings, provided your dataset is sufficiently large and well labelled. If at first you don't get good results, there are steps you might be able to take to improve, but we always recommend users first train with all default settings before considering any changes. This helps establish a performance baseline and spot areas for improvement.

If you have questions about your training results we recommend you provide the maximum amount of information possible if you expect a helpful response, including results plots (train losses, val losses, P, R, mAP), PR curve, confusion matrix, training mosaics, test results and dataset statistics images such as labels.png. All of these are located in your project/name directory, typically yolov5/runs/train/exp.

We've put together a full guide for users looking to get the best results on their YOLOv5 trainings below.

Dataset

  • Images per class. ≥ 1500 images per class recommended
  • Instances per class. ≥ 10000 instances (labeled objects) per class recommended
  • Image variety. Must be representative of deployed environment. For real-world use cases we recommend images from different times of day, different seasons, different weather, different lighting, different angles, different sources (scraped online, collected locally, different cameras) etc.
  • Label consistency. All instances of all classes in all images must be labelled. Partial labelling will not work.
  • Label accuracy. Labels must closely enclose each object. No space should exist between an object and it's bounding box. No objects should be missing a label.
  • Label verification. View train_batch*.jpg on train start to verify your labels appear correct, i.e. see example mosaic.
  • Background images. Background images are images with no objects that are added to a dataset to reduce False Positives (FP). We recommend about 0-10% background images to help reduce FPs (COCO has 1000 background images for reference, 1% of the total). No labels are required for background images.

COCO Analysis

Model Selection

Larger models like YOLOv5x and YOLOv5x6 will produce better results in nearly all cases, but have more parameters, require more CUDA memory to train, and are slower to run. For mobile deployments we recommend YOLOv5s/m, for cloud deployments we recommend YOLOv5l/x. See our README table for a full comparison of all models.

YOLOv5 Models

  • Start from Pretrained weights. Recommended for small to medium sized datasets (i.e. VOC, VisDrone, GlobalWheat). Pass the name of the model to the --weights argument. Models download automatically from the latest YOLOv5 release.
python train.py --data custom.yaml --weights yolov5s.pt
                                             yolov5m.pt
                                             yolov5l.pt
                                             yolov5x.pt
                                             custom_pretrained.pt
  • Start from Scratch. Recommended for large datasets (i.e. COCO, Objects365, OIv6). Pass the model architecture yaml you are interested in, along with an empty --weights '' argument:
python train.py --data custom.yaml --weights '' --cfg yolov5s.yaml
                                                      yolov5m.yaml
                                                      yolov5l.yaml
                                                      yolov5x.yaml

Training Settings

Before modifying anything, first train with default settings to establish a performance baseline. A full list of train.py settings can be found in the train.py argparser.

  • Epochs. Start with 300 epochs. If this overfits early then you can reduce epochs. If overfitting does not occur after 300 epochs, train longer, i.e. 600, 1200 etc epochs.
  • Image size. COCO trains at native resolution of --img 640, though due to the high amount of small objects in the dataset it can benefit from training at higher resolutions such as --img 1280. If there are many small objects then custom datasets will benefit from training at native or higher resolution. Best inference results are obtained at the same --img as the training was run at, i.e. if you train at --img 1280 you should also test and detect at --img 1280.
  • Batch size. Use the largest --batch-size that your hardware allows for. Small batch sizes produce poor batchnorm statistics and should be avoided.
  • Hyperparameters. Default hyperparameters are in hyp.scratch-low.yaml. We recommend you train with default hyperparameters first before thinking of modifying any. In general, increasing augmentation hyperparameters will reduce and delay overfitting, allowing for longer trainings and higher final mAP. Reduction in loss component gain hyperparameters like hyp['obj'] will help reduce overfitting in those specific loss components. For an automated method of optimizing these hyperparameters, see our Hyperparameter Evolution Tutorial.

Further Reading

If you'd like to know more a good place to start is Karpathy's 'Recipe for Training Neural Networks', which has great ideas for training that apply broadly across all ML domains: http://karpathy.github.io/2019/04/25/recipe/

Good luck 🍀 and let us know if you have any other questions!

@github-actions
Copy link
Contributor

github-actions bot commented Dec 5, 2022

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

@github-actions github-actions bot added the Stale Stale and schedule for closing soon label Dec 5, 2022
@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Dec 15, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested Stale Stale and schedule for closing soon
Projects
None yet
Development

No branches or pull requests

2 participants