forked from flypitch/flypitch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary.lean
89 lines (57 loc) · 2.13 KB
/
summary.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
/-
Copyright (c) 2019 The Flypitch Project. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jesse Han, Floris van Doorn
-/
import .zfc .completeness .print_formula
open fol bSet pSet lattice collapse_algebra
/-
This file summarizes:
- important definitions with #print statements, and
- important theorems with duplicated proofs
The user is encouraged to use their editor's jump-to-definition
feature to inspect the source code of any expressions which are
printed or which occur in the proofs below.
-/
#print Language
#print preterm
#print preformula
#print term
#print formula
#print sentence
#print soundness
#print prf
#print provable
#print is_consistent
#print pSet
#print bSet
#print L_ZFC
#print ZFC
#eval print_formula_list ([axiom_of_emptyset, axiom_of_ordered_pairs, axiom_of_extensionality, axiom_of_union, axiom_of_powerset, axiom_of_infinity, axiom_of_regularity, zorns_lemma])
#print CH
#print CH_f
#print 𝔹_cohen
#print 𝔹_collapse
theorem godel_completeness_theorem {L} (T) (ψ : sentence L) : T ⊢' ψ ↔ T ⊨ ψ :=
completeness T ψ
theorem boolean_valued_soundness_theorem {L} {β} [complete_boolean_algebra β] {T : Theory L}
{A : sentence L} (H : T ⊢ A) : T ⊨[β] A :=
forced_of_bsatisfied $ boolean_formula_soundness H
theorem fundamental_theorem_of_forcing {β} [nontrivial_complete_boolean_algebra β] :
⊤ ⊩[V β] ZFC :=
bSet_models_ZFC β
theorem ZFC_is_consistent {β : Type} [nontrivial_complete_boolean_algebra β] :
is_consistent ZFC :=
consis_of_exists_bmodel (bSet_models_ZFC β)
theorem CH_unprovable : ¬ (ZFC ⊢' CH_f) :=
CH_f_unprovable
theorem neg_CH_unprovable : ¬ (ZFC ⊢' ∼CH_f) :=
neg_CH_f_unprovable
def independent {L : Language} (T : Theory L) (f : sentence L) : Prop :=
¬ T ⊢' f ∧ ¬ T ⊢' ∼f
theorem independence_of_CH : independent ZFC CH_f :=
by finish [independent, CH_unprovable, neg_CH_unprovable]
#print axioms independence_of_CH
/- `propext` (propositional extensionality),
`classical.choice` (a type-theoretic choice principle), and
`quot.sound` (quotients) are the standard axioms in Lean. -/