-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathcsf_demo.m
70 lines (59 loc) · 2.79 KB
/
csf_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
%CSF_DEMO - Demonstrate denoising and deconvolution with learned shrinkage field models.
%
% See also CSF_PREDICT, CSF_VISUALIZE.
% Author: Uwe Schmidt, TU Darmstadt ([email protected])
%
% This file is part of the implementation as described in the CVPR 2014 paper:
% Uwe Schmidt and Stefan Roth. Shrinkage Fields for Effective Image Restoration.
% Please see the file LICENSE.txt for the license governing this code.
function csf_demo
% load your own learned model like this:
% name = 'my model'; model = train.to_model('model.mat');
%% load ground truth test image
x_gt = double(rgb2gray(imread('office_4.jpg')));
figure, colormap(gray(256))
%% image denoising (1)
name = 'csf_3x3'; load(sprintf('models/table1/sigma15/%s.mat',name));
fprintf('Image denoising (sigma=%g) with %s model (%d stages):\n', model.sigma, name, model.nstages)
y = x_gt + model.sigma*randn(size(x_gt));
x = csf_predict(model,y);
show_results(x_gt,y,x,model,name);
fprintf('Press any key to continue...\n'); pause; fprintf('\n');
%% image deconvolution
name = 'csf_pw'; load('models/table3/csf_pw.mat');
fprintf('Image deconvolution (sigma=%g) with %s model (%d stages):\n', model.sigma, name, model.nstages)
k = dlmread('data/kernels/image_08.dlm','\t');
y = conv2(x_gt,k,'valid');
b = (size(k)-1)/2; % adjust x_gt to have same size as blurred image
x_gt = x_gt(1+b(1):end-b(1),1+b(2):end-b(2));
y = y + model.sigma*randn(size(y));
x = csf_predict(model,y,k);
y(1:3*size(k,1),1:3*size(k,2)) = imresize(k*255/max(k(:)),3,'nearest'); % embed blur kernel for visualization
show_results(x_gt,y,x,model,name);
fprintf('Press any key to continue...\n'); pause; fprintf('\n');
%% image denoising (2)
name = 'csf_7x7'; load(sprintf('models/table2/%s.mat',name));
fprintf('Image denoising (sigma=%g, 8-bit quantization) with %s model (%d stages):\n', model.sigma, name, model.nstages)
y = x_gt + model.sigma*randn(size(x_gt));
y = double(uint8(y)); % 8-bit quantization
x = csf_predict(model,y);
show_results(x_gt,y,x,model,name);
fprintf('Press any key to continue...\n'); pause; fprintf('\n');
%% show learned model
name = 'csf_3x3'; load(sprintf('models/table2/%s.mat',name));
fprintf('Visualization of %s model (%d stages)\n', name, model.nstages)
close
csf_visualize(model);
end
function show_results(x_gt,y,x,model,name)
nstages = numel(x);
psnrs = cellfun(@(v)psnr(v,x_gt),x);
subplot(121), imagesc(y,[0,255]), axis image on
title(sprintf('Input (\\sigma=%g), PSNR = %.2fdB', model.sigma, psnr(y,x_gt)))
subplot(122), imagesc(x{end},[0,255]), axis image on
title(sprintf('Output (%s) stage %d, PSNR = %.2fdB', name, nstages, psnrs(end)),'interpreter','none')
end
function f = psnr(x,y)
mse = mean((x(:)-y(:)).^2);
f = 20*log10(255) - 10*log10(mse);
end